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Factors affecting spatial resolution

Gijs J. O. Vermeer∗

ABSTRACT

The theory of spatial resolution has been well-estab-
lished in various papers dealing with inversion and
prestack migration. Nevertheless, there is a continuing
flow of papers being published on spatial resolution, in
particular in relation to spatial sampling. This paper con-
tinues the discussion, and deals with various factors af-
fecting spatial resolution.

The theoretical best-possible resolution can be pre-
dicted using Beylkin’s formula. This formula gives an-
swers on the effect on resolution of frequency, aperture,
offset, and acquisition geometry. In this paper, these
factors are investigated using a single diffractor in a
constant-velocity medium. Some simple resolution for-
mulas are derived for 2-D zero-offset data. These formu-
las are similar to formulas derived elsewhere in a more
heuristic way, and which are in common use in the indus-
try. The formulas are extended to 2-D common-offset
data.

The width of the spatial wavelet resulting from mi-
gration of the diffraction event is compared with the

resolution predicted from Beylkin’s formula for various
3-D single-fold data sets. The measured widths confirm
the theoretical prediction that zero-offset data produce
the best possible resolution and 3-D shots the worst,
with common-offset gathers and cross-spreads scoring
intermediate.

The effects of sampling and fold cannot be derived
directly from Beylkin’s formula; these effects are ana-
lyzed by looking at the migration noise rather than at
the width of the spatial wavelet. Random coarse sam-
pling may produce somewhat less migration noise than
regular coarse sampling, though it cannot be as good
as regular dense sampling. The bin-fractionation tech-
nique (which achieves finer midpoint sampling without
changing the station spacings) does not achieve higher
resolution than conventional sampling.

Generally speaking, increasing fold does not improve
the theoretically best possible resolution. However, as
noise always has a detrimental effect on the resolvability
of events, fold—by reducing noise—will improve reso-
lution in practice. This also applies to migration noise as
a product of coarse sampling.

INTRODUCTION

The theory of spatial resolution has been dealt with in great
detail by various authors on prestack migration and inversion
(e.g., Berkhout, 1984; Beylkin, 1985; Beylkin et al., 1985; Cohen
et al., 1986; Bleistein, 1987) and on diffraction tomography
(e.g., Wu and Toksöz, 1987). Despite all this work, the practical
consequences of the theory are still open to much debate.

Von Seggern (1994) discusses resolution for various 3-D ge-
ometries, and concludes: “Uniform 3-D patterns, asymmetric
patterns, and both narrow and wide swath 3-D patterns all
produce nearly equivalent images of a point scatterer, without
significantly better resolution in one or the other horizontal
direction.” These results were obtained using quite a coarse
measurement technique; moreover, fold varied across the mid-
point range. As a consequence, the considerable differences in
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resolution that do occur between different geometries were
overlooked.

Neidell (1994) submitted that coarse sampling, if compen-
sated by high fold (24-fold or higher), does not sacrifice reso-
lution. His conjecture led to a flurry of reactions (Ebrom et al.,
1995b; Neidell, 1995; Vermeer, 1995; Markley et al., 1996).

Ebrom et al. (1995b) and Markley et al. (1996) investigate
resolution using a tank model consisting of a number of vertical
rods. The time slices at the level of the top of the rods are
compared for various sampling intervals and folds of coverage.
Whereas Ebrom et al. (1995b) showed that the resolution in the
time slice could be finer than the acquisition common midpoint
(CMP) binning, Markley et al. (1996) conclude that finer CMP
binning improves the image significantly compared to coarse
binning with the same number of traces, thus contradicting
Neidell’s (1994) conjecture.

942



Factors Affecting Spatial Resolution 943

The issue of sampling is expanded further with the intro-
duction of quasi-random sampling (Zhou and Schuster, 1995;
Sun et al., 1997). Zhou and Schuster (1995) demonstrate that
quasi-random coarse sampling may lead to less migration arti-
facts than regular coarse sampling. Sun et al. (1997) conclude
that migration of data sampled with the quasi–Monte Carlo
technique can reduce the computational work load by a factor
of 4 or more. These results might be interpreted as “random
sampling is superior to regular acquisition for purposes of noise
reduction” (Bednar, 1996), a statement that assumes that the
(coherent) noise is coarsely sampled. Sun et al.’s (1997) con-
clusion is questioned in Vermeer (1998b).

Apart from the authors mentioned in the first paragraph,
none of the above authors mentioned Beylkin’s formula for
spatial resolution, even though it had already been published in
1985 (Beylkin, 1985). The present paper uses Beylkin’s formula
to derive resolution formulas for simple cases and to explain
results obtained for various configurations. Lavely et al. (1997)
and Gibson et al. (1998) also use Beylkin’s formula as a starting
point for resolution analysis.

Levin (1998) provides a lucid narrative of the resolution of
dipping reflectors. The present paper, although not dealing ex-
plicitly with reflectors, confirms many insights offered in that
paper, which is recommended for further reading.

In conventional seismic acquisition, the measurements are
carried out at or close to the surface, basically in one horizontal
plane. This measurement configuration leads to quite a differ-
ence between the resolution in the vertical direction and the
resolution in a plane parallel to the measurement plane. This
paper deals only with such configurations; hence, it does not
discuss the resolution of measurements at various depth levels,
such as made with vertical seismic profiling (VSPs).

Resolution is about the resolvability of two close events. This
resolvability is determined by the width of the main lobe of the
wavelet and by the strength of the side lobes relative to the main
lobe. In this paper, I leave the effect of side lobes mostly aside;
I concentrate on measurements of the width of the wavelet
after migration. [For a detailed discussion of the effect of side-
lobes, see Berkhout (1984). In particular if two events have
different strengths, side lobes of the strong event may mask
the main peak of the weak event.] The wider the wavelet,
the larger the distance between two events needs to be for
their resolvability. The smallest distance for which two events
can still be distinguished is called the minimum resolvable
distance.

The theory of resolution leads to a potential resolution (i.e.,
the best possible resolution for a given source wavelet), velocity
model, shot/receiver configuration, and some position of the
output point. The potential resolution can only be achieved if
the wavefield is properly sampled. Next to potential resolution,
this paper also uses achievable resolution, which is defined as
the best possible resolution that can be achieved in practice.
Events which do not satisfy the velocity model, migration noise
caused by coarse sampling, and other types of noise all affect
resolvability; hence, the achievable resolution is not as good as
the potential resolution.

How to measure temporal resolution has been the subject of
various papers. In a classic paper, Kallweit and Wood (1982)
discuss how various criteria (Rayleigh, Ricker, Widess crite-
ria) can be used to describe the width of a wavelet as a mea-
sure of temporal resolution. They conclude that (potential)

resolution is proportional to maximum frequency (strictly
speaking, to frequency bandwidth; Knapp, 1990). In this paper,
their results are extended into the realm of spatial resolution,
i.e., spatial resolution is proportional to maximum wavenum-
ber, and the minimum resolvable distance is inversely propor-
tional to maximum wavenumber.

This paper is structured as follows. The paper starts with
a summary of the main points on spatial resolution as made
in Beylkin et al. (1985) and applies this theory to a constant-
velocity medium. This leads naturally to similar resolution for-
mulas (for 2-D data) as given in Ebrom et al. (1995a) with an
extension to offset data. In the next part, I illustrate various
aspects of spatial resolution (aperture, offset, acquisition ge-
ometry) using a single diffractor in a constant-velocity medium
(the same model as used in von Seggern, 1994). The width of
the spatial wavelet after migration is used as a measure in the
resolution comparisons. Finally, I discuss why sampling is im-
portant, even though the sampling interval does not appear in
the resolution formulas, and I discuss the influence of fold. A
poster version of this paper was published as Vermeer (1998a).

SPATIAL RESOLUTION FORMULAS

Spatial resolution—the link with migration/inversion

In the literature, true-amplitude prestack migration formu-
las have been derived for single-fold 3-D data sets with two
spatial coordinates ξ1 and ξ2, and traveltime t or frequency
f as the third coordinate. The coordinates ξ1 and ξ2 describe
the shot/receiver configuration. That is, for fixed X and fixed
Y, xs= (X, Y, 0) and xr= (ξ1, ξ2, 0) describe a 3-D common-shot
gather, and xs= (ξ1, Y, 0) and xr= (X, ξ2, 0) describe a cross-
spread. Note that these data sets are the same data sets intro-
duced as subsets of various 3-D geometries in Vermeer (1994,
1998c), and which are called minimal data sets in Padhi and
Holley (1997).

Beylkin (1985) and Beylkin et al. (1985) derive formulas
to compute (“reconstruct”) acoustic impedance contrast as a
function of position x(x, y, z) from seismic measurements with
limited aperture. The limited aperture is defined by the range of
ξ = (ξ1, ξ2). They show that in this process, the observed data
are transformed into reconstructed data using a mapping of
(ξ1, ξ2, f ) (the coordinates of the observed data) to (kx , ky, kz)
(the coordinates of the reconstructed data). The mapping is
given by

k = f∇xφ(x, ξ), (1)

in which k= (kx , ky, kz) is the wavenumber vector in the re-
constructed (migration) domain, and φ(x, ξ) is the traveltime
surface (also called migration operator) of a diffractor in x
for shot/receiver pairs described by ξ. ∇xφ(x, ξ) represents the
derivative of φ(x, ξ) with respect to the point of reconstruction
(output point) x;φ(x, ξ) has to be computed from the back-
ground model (velocity model).

Equation (1) maps the 5-D traveltime surface φ(x, ξ) to
3-D wavenumber. This mapping corresponds to the fact that
in prestack migration, each input trace described by ξ is used
in the reconstruction of a volume of output points (x, y, z).
Equation (1) determines the region of coverage Dx in the spa-
tial wavenumber domain (the 3-D spatial bandwidth). Beylkin
et al. (1985) state, “the description of Dx is, in fact, the estimate
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of spatial resolution.” The larger the region of coverage in k,
the better the potential resolution.

To further explain the meaning of equation (1), it is worth-
while quoting Beylkin et al. (1985) (with minor modifications
to reflect the notation used in this paper):

The mapping equation (1) is of fundamental impor-
tance with respect to inversion algorithms. It shows how
the total domain of integration (ξ1, ξ2, f ) on which our
data are defined is related to region of coverage in the
domain of spatial frequencies.

To summarize, the spatial resolution at a given point x
defined by the region Dx depends on
i) the total domain of integration, which is determined
by the configuration of sources and receivers and the fre-
quency band of the signal, and
ii) the mapping equation (1) of this domain into the do-
main of spatial frequencies, which is determined by the
background model and can be obtained numerically by
raytracing. This mapping is different for each point of
reconstruction.

Together i) and ii) determine the limits on spatial res-
olution at each point of reconstruction given the config-
uration of experiment and the background model.

Beylkin’s formula [equation (1)] makes analysis of poten-
tial resolution quite simple: It should be possible to explain
many resolution tests by analyzing the spatial gradients of the
diffraction traveltime surfaces φ(x, ξ) in the given experiment
configuration.

It is not (always) necessary to analyze the full coverage in
k. As follows from Kallweit and Wood (1982), the maximum
wavenumber [corresponding to maximum gradients of φ(x, ξ)]
can give a fair indication of resolution, provided k= 0 is part
of the wavenumber range.

The diffraction traveltime φ(x, ξ) can be described as

φ(x, ξ) = τ (x, xs)+ τ (x, xr) = τs + τr, (2)

where τ (x, y) is the traveltime from surface position y to sub-
surface position x. Similarly, k can be written as the vectorial
sum

k = ks + kr, (3)

where ks and kr are the contributions of shot and receiver, re-
spectively, to the wavenumber vector k. It can be shown that the
directional derivatives of the traveltimes τs and τr with respect
to x are in fact the directions of the corresponding raypaths in x.
Hence, ks and kr point in the direction of the raypaths at x (see
Figure 1). Each shot/receiver pair in the geometry corresponds
to a point k in wavenumber space. Taking all shot/receiver pairs
of a configuration leads to a collection of points in wavenumber
space.

This mapping of a geometry configuration to wavenumber
space is also the subject of many papers dealing in particular
with VSP and crosswell resolution analysis (Devaney, 1984; Wu
and Toksöz, 1987; Goulty, 1997; Lavely et al., 1997). Goulty
(1997) provides a very readable description of this approach.
Beylkin’s formula describes this mapping in a concise way.

It may be seen immediately from equation (3) and Figure 1
that zero-offset data can potentially produce the highest reso-
lution because ks and kr coincide in that case.

Before taking the next step, I want to mention that sampling
considerations do not appear at all in above discussion. Beylkin
et al. (1985) assume, in fact, continuous variables ξ1 and ξ2. In
other words, because in practice sampling is inevitable, sam-
pling should be dense enough to allow accurate evaluation of
the integrals involved in migration. The resolution that can be
obtained in that case is the potential resolution, as introduced
earlier.

Spatial resolution formulas for constant velocity

It is illuminating to investigate Dx for a medium with cons-
tant velocity v and zero-offset geometry. For a point xs =
xr = (ξ1, ξ2, 0), substituting of equation (2) into equation (1)
leads to

k = 2
(

x − ξ1

d
,

y − ξ2

d
,

z

d

)
f/v, (4)

where d is the distance from the coinciding shot and receiver to
the subsurface point x. The vector in the parentheses is the unit
vector pointing from xs to x. The left side of Figure 8 depicts
equation (4) graphically.

Consider now a 2-D zero-offset geometry laid out along the
x-axis. Then the maximum values for kx and kz can be written
as

kx,max = 2 fmax sin θx,max/v,
(5)

kz,max = 2 fmax/v,

where θx,max is the angle between the vertical and the raypath
from the output point to the farthest shot/receiver pair.

Note the difference between horizontal and vertical resolu-
tion: kx reaches its maximum for the maximum value of d in the
x-direction, whereas kz reaches its maximum for the minimum
value of d (i.e., if d = z, then kz = 2 f/v). A corollary of these

FIG. 1. Illumination of diffractor D by shot/receiver pair S/R.
The directions of the raypaths at D determine the shot and
receiver wavenumber components of total wavenumber k. SD
and RD are also the reflection raypaths for a reflector through
D with dip angle θ = (θs + θr )/2. The raypaths make an angle
i = (θs − θr )/2 with k.
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observations is that horizontal resolution can be improved
by using a larger migration aperture (migration radius), thus
including a steeper part of the diffraction traveltime curves,
whereas vertical resolution does not depend on aperture.

Kallweit and Wood (1982) show that a practical limit for
temporal resolution, i.e., the minimum resolvable time interval
Rt , is given by the tuning thickness of a zero-phase wavelet,
which is the distance between peak and first trough (Rayleigh
criterion). For a Ricker wavelet, they show that

Rt = 1
2.6 f p

, (6a)

where f p is the peak frequency of the Ricker wavelet. For a
sinc wavelet, Kallweit and Wood (1982) show that

Rt = 1
1.4 fmax

= c

fmax
, (6b)

where fmax is the maximum frequency, and the proportionality
factor c is 0.71.

Analogously, for spatial frequencies, the minimum resolv-
able distance in a particular direction α follows from Rα =
c/kα,max. Using equation (5), this yields

Rx = cv

2 fmax sin θx,max
, (7a)

and

Rz = c

2 fmax
. (7b)

With c= 1/2, we find the same formulas for horizontal and
vertical resolution as given in Ebrom et al. (1995a). For mea-
surements based solely on peak-to-peak or peak-to-trough dis-
tances, c=1/2 is too optimistic. However, “below the tuning
thickness limit, amplitude information encodes thickness vari-
ations provided the entire amplitude variation is caused by
tuning effects, and amplitude calibration then permits . . . thick-
ness calculations for arbitrarily thin beds” (Kallweit and Wood,
1982).

[A different, but questionable formula for resolution, is pre-
sented in Safar (1985) and quoted in Neidell (1995). Using the
same notation as above, equation (7) in Safar (1985) reads

Rx = 1.4v
4 fmax tan θx,max

, (8)

which means that unlimited resolution would be achievable
with unlimited aperture.]

Using similar reasoning as for the 2-D zero-offset gather
above, it follows that for a 2-D common-offset gather (ac-
quired along the x-axis), the minimum horizontally resolvable
distance becomes

Rx = cv

fmax(sin θs,max + sin θr,max)
, (9)

where θs,max and θr,max are the angles of the vertical with the
raypaths as indicated in Figure 1 for the shot/receiver pair with
the largest distance of its midpoint M to the output point. Note
that equation (9) also applies to a 2-D common-offset gather
acquired along a line parallel to the x-axis. In that case, the
angles are measured in the plane through acquisition line and
output point.

Equation (9) can also be written as (see Figure 1)

Rx = cv

2 fmax sin θx,max cos i
, (10)

where θx,max= (θs,max+θr,max)/2 (i.e., the maximum dip angle il-
luminated by the shot/receiver pairs), and i = (θs,max− θr,max)/2
(the angle of incidence of the raypaths for the maximum dip
angle).

Note the similarity between equations (7a) and (10): for
i = 0, equation (10) reduces to equation (7a). Both equations
show that the maximum horizontal resolution is closely cou-
pled to the maximum dip angle that can be illuminated.

The vertical resolution that can be reached with a common-
offset/common-azimuth gather can be written as

Rz = cv

2 fmax cos i
, (11)

where i is now the angle for the shot/receiver pair with θs =−θr

(i.e., with its midpoint located vertically above the output
point). Cos i in equations (10) and (11) describes the NMO
stretch effect, which reduces fmax to fmax cos i . As a conse-
quence, for a given midpoint range, the minimum resolvable
distance achievable by offset data is larger than for zero-offset
data (i.e., resolution is best for zero-offset data).

Before discussing spatial resolution measurements, I would
like to make a link with discussions on migration stretch
(Tygel et al., 1994; Levin, 1998). Figure 1 illustrates that
each shot/receiver pair corresponds to a wavenumber vector
k, which is normal to the plane illuminated by the shot/receiver
pair. For a plane dipping in the x-direction with angle
θ,k= (kx , ky, kz)= 2 f/v (sin θ cos i , 0, cos θ cos i), where i is
the angle of incidence. The factor 1/ cos θ cos i is sometimes
called the migration stretch factor or vertical pulse distortion
(Tygel et al., 1994). Similarly, the factor 1/ sin θ cos i might be
called the horizontal pulse distortion. The larger θ , the larger
kx ; hence, the better the horizontal resolution. θx,max is deter-
mined by the range of input data or, what is about the same,
the migration radius. As argued in Levin (1998), the pulse dis-
tortion as a function of θ is only an apparent distortion because
the magnitude of k in the θ direction is not affected by it. Only
the cos i factor (NMO stretch factor) affects all components
of k and means a reduction in resolution in all directions. An
extensive discussion of these insights is given in Levin (1998).

SPATIAL RESOLUTION MEASUREMENTS

Procedure for resolution analysis

Next, I illustrate various issues relating to resolution based
on a model consisting of a single diffractor in (0, 0, 500) in a
constant-velocity medium with velocity = 2500 m/s. The source
wavelet is a Ricker wavelet with peak frequency f p = 50 Hz.
The same model and isotropic source wavelet was used in
von Seggern (1994). The starting point is a modified version
of von Seggern’s equation (1), which was derived from equa-
tion (21) of Cohen et al. (1986):

f (x) =
∫∫

dξ1 dξ2h(x, ξ)p[φ(x, ξ)− φ(0, ξ)], (12)

where f (x) is image in x, p[t] is source wavelet, and h(x, ξ) is
Jacobian of coordinate transformation corresponding to equa-
tion (1). φ(0, ξ) is the traveltime surface [equation (2)] of the
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actual diffractor, the data, whereas φ(x, ξ) is the traveltime
surface of a diffractor in the output point, i.e., the integration
path. p[φ(x, ξ) − φ(0, ξ)] picks the value of the wavefield at
the correct point in the source wavelet. Amplitude factors nor-
mally occurring in the migration formulas cancel in this case as
the output point is close to the actual diffractor (von Seggern,
1994).

In von Seggern (1991), it was shown that, for a scatterer,
migration of surface data recorded with a Ricker wavelet as a
source pulse produces a Gaussian spatial wavelet in the hori-
zontal directions, but maintains the Ricker wavelet in the verti-
cal direction. Figure 2 displays the source wavelet and the cor-
responding Gaussian wavelet on the same scale. The Gaussian
represents the ideal horizontal wavelet.

In the following, I concentrate on measurements of the width
of the spatial wavelet in the horizontal direction, this width
being representative of the minimum resolvable distance in
that direction.

2-D resolution in the zero-offset model

For a varying line length and constant sampling interval of
25 m, and using coinciding shots and receivers along the x-axis,
Figure 3 displays the amplitude of a horizontal trace at the

FIG. 2. The basic spatial wavelets used in this paper. The Ricker
wavelet and the Gaussian wavelet have been drawn for a peak
frequency of 50 Hz and a velocity of 2500 m/s. The Gaussian
wavelet is the narrowest achievable bell in prestack migration
for the horizontal coordinates.

FIG. 3. Horizontal resolution in a 2-D zero-offset geometry for
various apertures and a diffractor in (0, 0, 500). Starting with
the widest, the wavelets correspond successively to aperture
widths 600, 1000, 1500, 3000, and 6000 m. The horizontal line
in the center of the figure indicates the level at which widths
have been measured for Figures 4 and 5 (width of ideal wavelet
is 12.5 m).

depth of the diffractor (500 m). The maximum amplitude of
all traces has been normalized to 1. The ideal spatial wavelet
is also displayed. It virtually coincides with the wavelet found
for a line length of 6000 m. Figure 3 shows that limiting the
line length (migration aperture width) leads to wider spatial
wavelets. This wavelet stretch is an expression of the horizontal
pulse distortion introduced earlier.

I now introduce a measure of width of the various wavelets
by defining the width of the ideal wavelet as 12.5 m (horizontal
line in Figure 3). Figure 4 tests the hypothesis that this width is
representative of maximum wavenumber and of spatial resolu-
tion. The squares indicate the measured widths of the wavelets
shown in Figure 3, whereas the drawn line represents predicted
widths according to

w = v

4 f p sin θx,max
. (13)

The choice of proportionality factor 1/4 ensures w= 12.5 m
for sin θx,max= 1. According to equation (7a), the right-hand
side of equation (13) is proportional to minimum resolv-
able distance ( fmax is proportional to f p). The near-perfect
agreement between measured width and predicted width con-
firms the hypothesis.

2-D resolution in offset model

In Figure 5, the results of different offset experiments have
been brought together. As in Figure 4, the widths of the spatial
wavelets are measured at the same normalized value (squares),
and also computed on basis of a modification of equation (9)
(solid curves):

w = v

2 f p(sin θs + sin θr )
, (14)

Each curve represents the results for a single midpoint range.
In this case, the agreement between predicted value and mea-
sured value is not as good as for the zero-offset data in Figure 4.
However, the main trends are caught reasonably well, with in-
creasing discrepancies for increasing line lengths.

For line length 2500 m, the width of the spatial wavelet tends
to decrease with increasing offset. For even wider apertures,
the width can become smaller than the ideal width (12.5 m)
corresponding to the input wavelet. I suspect that this is caused

FIG. 4. Widths of spatial wavelets shown in Figure 3 plotted
against sin θ , with θ being the maximum angle between diffrac-
tor and shot/receiver pairs. Each square is labeled with its cor-
responding aperture width. The drawn curve corresponds to
equation (13).
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by nonlinear effects for large apertures. Line lengths of 2500 m
and more are unrealistically long compared to the depth of the
diffractor at 500 m. This causes distortion of the wavelet.

Asymmetric aperture

In the previous sections, the diffractor was placed at the cen-
ter of the midpoint range. It is of interest to investigate what
happens for an asymmetric configuration, which may occur
along the edge of a survey. Also, in single-fold 3-D data sets
with limited extent (such as the cross-spread or a 3-D common-
shot gather), the resolution may depend on the position of the
output point with respect to the center of the data set.

Figure 6 describes a series of zero-offset experiments with
constant midpoint range (500 m) and varying position of the
diffractor. Figure 7 shows the resulting spatial wavelets for
these experiments. The ideal spatial wavelet is also shown. The
widest wavelet is obtained for the symmetric aperture (diffrac-
tor 1), whereas diffractors 2 and 3 lead to the better resolution
represented by the next two wavelets. The spatial wavelet for
diffractor 3 is virtually the same as for a symmetric experiment
with line length 1000 m (cf. Figure 3). In other words, the max-
imum absolute wavenumber determines the resolution. With
diffractor 3, we deal with a perfect one-sided operator which, at
least in the actual diffraction point, is identical to the contribu-
tion that would have been obtained from the operator on the
other side had the line extended also 500 m in that direction.

FIG. 5. Widths of spatial wavelets as a function of offset for line
lengths 1000 (top), 1300, 1700, and 2500 m. The drawn curves
correspond to equation (14).

FIG. 6. Geometry for the asymmetry test.

For even larger aperture angles (diffractors 4 and 5), the
central lobe continues to become smaller, at the expense of
developing side lobes. For these diffractors, k= 0 does not oc-
cur in the wavenumber range, leading to incomplete spatial
wavelets.

These results reveal a limitation of the resolution analysis
using the spatial wavelet of a diffractor only as measured along
the horizontal through the diffractor. Analysis of the full image
would show its asymmetry for asymmetric input (Margrave,
1997). Mapping the configuration in the wavenumber domain
would also show the asymmetry.

3-D spatial resolution

Up to this point, I only have discussed spatial resolution re-
sults for 2-D input. Next, I compare resolution of different min-
imal data sets (3-D single-fold data sets). For a fair comparison,
the midpoint areas of the different configurations are equal to
1000× 1000 m in all experiments. The diffractor is chosen in the
center of the configuration at a depth of 500 m. Figure 8 shows
the wavenumber spectra (computed from Beylkin’s formula)
for four different minimal data sets for two different input fre-
quencies. The four boxes all have the same scale and, for ease of
comparison, the positions of two corresponding points are in-
dicated. The zero-offset wavenumber spectrum lies on a sphere
with radius |k| = 2 f/v [c.f. equation (4)]. For the wavenumber
spectra of the other minimal data sets, |k| ≤ 2 f/v because of
the NMO stretch effect. The 1000-m offset spectrum is strongly
asymmetric; it is much wider in the cross-line direction than in
the in-line direction. It is interesting to note that a single input
frequency gives rise to a wide range of horizontal wavenum-
bers, including k= 0.

This should not be taken to mean that a single frequency is
sufficient for optimal horizontal resolution (Vermeer, 1998a).
It just means that the given midpoint range allows resolution in
a wide range of directions (c.f. Figure 1). For a good resolution,
it is still necessary to have a broad input spectrum, leading to a
broad range of k-values in all those directions which have been
illuminated by the range of input data. Yet, if we do have a
broad spectrum, the maximum frequency or wavenumber may

FIG. 7. Asymmetry test results. The spatial wavelets have been
computed for the five diffractors shown in Figure 6, but have
been plotted on top of each other for easier comparison. The
width of the central loop becomes progressively smaller for
diffractors 1–5. The ideal spatial wavelet is drawn as a dashed
line for reference.
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be taken as a main descriptor of resolution. In the case of the
zero-offset section, the magnitude of k remains constant.

The maximum vertical wavenumber kz,max of the zero-offset
data, the cross-spread data, and the common-shot data is
reached in the center of the plot: kz,max= 2 f/v. For f = fmax,
this value gives an upper limit to the potential vertical resolu-
tion of any data set. Note, however, that the cross-spread and
the 3-D shot reach this high value only for an output point right
below the center of the data set. For output points away from
the center, the maximum vertical wavenumber will be smaller,
with correspondingly smaller potential resolution. The value
at the center for the 1000-m offset data can be derived from
equation (11) (and Rz= c/2kz,max) and equals 2 f/(v

√
2). The

maximum value of kz is somewhat larger (see Figure 8).
The projections on the horizontal wavenumber plane of the

wavenumber spectra shown in Figure 8 are shown in Figure 9.
The spectrum for 600-m offset is included as well. Figure 9
allows the prediction of the outcome of resolution tests for
the five minimal data sets. The zero-offset section shows the
broadest wavenumber range, followed by the 600-m offset data.
Note the strong asymmetry of the spectrum for the 1000-m
offset data. The 1000-m offset, the cross-spread, and the 3-D
shot all have the same maximum wavenumber along the kx-
axis. This does not mean that these three data sets all have the
same resolution in x. The maximum wavenumber as a function
of ky also plays a role. Maximum kx does not vary as a function
of ky for the cross-spread, but it becomes smaller for the 1000-m
offset gather and the 3-D shot; smallest for the 3-D shot.

Figure 10 shows the results of the computation of the spatial
wavelets for the five minimal data sets discussed in Figure 9.
For ease of comparison, the wavelets are not shown in an areal
sense; only the wavelets for the x-coordinate are shown. For
the 1000-m offset data the wavelet also is shown as computed
for the cross-line direction. This wavelet nearly coincides with
the wavelet for the in-line 600-m offset. This confirms once
more that the resolution of offset data is better in the cross-line
direction than in the in-line direction. The sequence of wavelet
widths shown in Figure 10 is predicted by the wavenumber
ranges shown in Figure 9.

The worst potential resolution is obtained for the 3-D shot.
At first sight, this might be surprising because the diffrac-
tion traveltime surfaces as we know them are steeper for a
common shot than for a zero-offset gather. However, this
is the behavior of the diffraction traveltime curves on in-
put, as a function of midpoint (x, y), whereas Beylkin’s for-
mula says that spatial resolution depends on the steepness of
the traveltime curves as a function of the output coordinates.

FIG. 8. Wavenumber spectra for four minimal data sets. All data sets have the same 1000×1000 m midpoint area with the diffractor
in the center. The surfaces correspond to constant input frequencies. From left to right: zero-offset gather, 1000-m common-offset
gather (with constant azimuth), cross-spread, and 3-D shot.

FIG. 9. Coverage in the horizontal wavenumber domain by five
different minimal data sets with the same 1000×1000 midpoint
area. The near circular shape in the center corresponds to the
3-D shot, the square to the cross-spread. The other three curves
represent common-offsets 1000 m, 600 m, and 0 m. The largest
wavenumbers are reached for the zero-offset section; hence,
this section has the best spatial resolution.

FIG. 10. Spatial wavelets for various minimal data sets. The
zero-offset gather produces the narrowest wavelet, the 3-D
common-shot gather the widest. Th curves for the 600-m in-line
common offset and the 1000-m cross-line common offset nearly
coincide. The relative widths of the wavelets confirm predic-
tions based on Figure 9.
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The results of Figure 10 confirm that the maximum wave-
number is not sufficient to predict the resolving power of a 3-D
data set. Rather than the maximum wavenumber, it is the av-
erage maximum wavenumber taken for all ky that turns out to
determine the resolution in x. This can be understood by real-
izing that the result of the 3-D experiment can be considered as
the average of the results of many 2-D experiments, each 2-D
experiment consisting of data with constant y. The 2-D data
with the largest y have a maximum kx that is (usually) smaller
than the data with y= 0 and hence produce a wider spatial
wavelet. Mathematically, the spatial wavelet of the whole 3-D
data set is the normalized sum of the spatial wavelets of the
contributing 2-D data sets.

The spatial wavelets shown thus far have all been normal-
ized to the same maximum value to allow comparison of their
relative widths. However, the discrimination against noise is
also important. To get an idea about resolving power in the
presence of noise, Figure 11 shows the “true amplitude” spa-
tial wavelets for which no normalization has taken place. The
small peak value and the relatively large tail value of the 3-D
shot suggest that this configuration scores also worst as far as
noise suppression is concerned. This aspect of geometry com-
parison is not further pursued in this paper.

Sampling and spatial resolution

The formulas for spatial resolution do not contain the sam-
pling interval because these formulas have been derived for
a continuous wavefield. If sampling takes place (which is in-
evitable, regardless whether we carry out modeling or real ex-
periments), we sample the integrands of the migration formulas
such as equation (12). If sampling is not rapid enough to keep
up with the variations of the integrand (i.e., the integrand is
aliased), unreliable results are produced, and resolution will
suffer (see also the next section).

Despite the obvious importance of adequate sampling, there
has been much discussion on the relation between sampling
and resolution (Neidell, 1994, 1995; von Seggern, 1994; Ebrom
et al., 1995a, b; etc.). Some of the results even seem to indicate
that resolution is not significantly impaired by coarse sampling.

Coarse sampling does not influence the resolution of some
model experiments because of the simplicity of the model. This
can be illustrated with another simple experiment. In Figure 12,
the spatial wavelets are shown for two 2-D geometries with the

FIG. 11. “True-amplitude” spatial wavelets for same configu-
rations as in Figure 10. The two solid curves with the same
maximum at 0.01 correspond to the in-line and the cross-line
resolutions of the 1000-m offset gather.

same line length of 1000 m, but different sampling intervals
of 12.5 and 200 m. The wavelets are virtually identical except
for the far end. The reason for this seemingly odd result is that
the model only consists of the single diffractor. In output points
close to the diffractor, the integrand in equation (12) varies only
slowly as a function of ξ [the difference φ(x, ξ) − φ(0, ξ) is a
slowly varying function of ξ ; the other elements in the integrand
vary slowly as well]. Hence, in this case, the large sampling
interval of 200 m is dense enough to follow the variations of
the integrand.

A similar reasoning can be applied to the results in von
Seggern, (1994, his Figures 4 and 5). Those results seem to
indicate even better resolution for the coarser sampling inter-
vals, but that effect can be attributed to the fact that in that
paper the effective spread length (the product of number of
samples and sampling interval) of the experiments increases
with increasing sampling interval.

Sampling and migration noise

In the previous section, it was shown that coarse sampling
does not have much effect on resolution as measured with a
single scatterer. However, migration of coarsely sampled input
data produces so-called migration noise. In this section, the
relation between sampling and migration noise is investigated.

To understand the effect of sampling on the migration result
(and hence on spatial resolution), it is useful to describe the mi-
gration process as a two-step procedure (see Figure 13). First,
the data are collected along the diffraction traveltime curves
corresponding to the output point. This process converts all
data contributing to that output point into a new data set, in
which the diffraction produced by a diffractor in the output
point is turned into a horizontal event (Figure 13b). A dipping
event is turned into a bowl-shaped event with its apex at the
position that has illuminated the output point, and with flanks
that may be steeper than the dip in the input. The second step
is to stack all this data into a single trace at the output point
(Figure 13c).

The response of this second step can be described as a
stack operator that depends on sampling (see Figure 14).
For regular sampling, this operator has a passband around
k= 1/d,d being the spatial sampling interval. If the input data
is coarsely sampled, it contains energy above kN = 1/2d. Then
the migration operator moves some of this energy to higher

FIG.12. Independence of spatial wavelet from spatial sampling.
The two nearly coinciding outer wavelets correspond to 5 sam-
ples at 200 m and to 80 samples at 12.5 m. The narrow dotted
curve is the ideal spatial wavelet.
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wavenumbers and also to the passband at k= 1/d, allowing that
energy to enter in the output. The stack operator of irregularly
sampled data will not show a passband (d is not constant), and
hence may better suppress energy above k= 0 than regularly
sampled data. Therefore, random coarse sampling can be bet-
ter than regular coarse sampling because it avoids the large
peak in the response. On the other hand, if the input data is
well sampled, there is no energy moving all the way to the pass-
band at k= 1/d. Instead, with regular sampling, suppression of
energy in the flanks of the operator benefits from the very low
response around k= 1/2d, whereas the reward for doubling
the sampling density in random sampling is only a reduction
of 6 dB in the overall response. Hence, regular dense sampling
gives much better suppression above k= 0 than random dense
sampling.

This reasoning is put to the test with the experiments il-
lustrated in Figure 15 for a horizontal event recorded by a
2-D zero-offset configuration. It shows vertical spatial wavelets
with maximum amplitude normalized to 1. [Equation (12) does
not include a phase-shift correction, therefore the reflection at
500 m is no longer zero phase.] The three leftmost wavelets
have been produced by migrating input data sampled at 12.5,
25, and 33.3 m. The sampling interval of the other two wavelets
was 33.3 m on average with random shifts of maximally 11.1 m
on either side of the target sample points (the random shifts
were generated using a uniform distribution). The figure shows
that the event itself is (reasonably) well imaged in all cases, but
that coarse sampling leads to migration noise above the event.
The two rightmost wavelets illustrate the findings in Zhou and
Schuster (1995) that quasi-random sampling may reduce mi-
gration noise.

In practice (assuming that quasi-random sampling is a prac-
tical proposition, which I doubt), apparent velocities in the
wavefield made up of reflections and diffractions may be larger
than those of coherent ground roll events. In that case, the
desired signal may be properly sampled by using a dense
sampling, whereas the coherent noise is still undersampled.
Under these conditions, the coherent noise would be better
suppressed by quasi-random dense sampling, whereas the de-
sired signal would be best served with regular dense sampling.
This dilemma is not solved here.

FIG. 13. Migration as a two-step process illustrated with 2-D zero-offset section. (a) Input showing diffraction (heavy curve) and
two dipping events (thin curves). (b) In the first step, the input data are realigned according to the diffraction traveltimes in the
output point. Shown is the realignment for the output point at x= 0, which is the position of the diffractor. (c) In the second step,
the realigned data are summed (stacked) to form one output trace. The response of the second step depends on the sampling of the
input data and is illustrated in Figure 14.

FIG. 14. Stack responses of regular dense sampling (sampling
interval 25 m, first passband at k= 0.04, thin line), regular
coarse sampling (sampling interval 50 m, first passband at
k = 0.02, dotted line), and random coarse sampling (sampling
interval 50 m on average, average of 50 realizations, no pass-
bands, heavy line). Horizontal line indicates level of random
noise suppression. Note that random sampling removes strong
peak(s), but cannot match rejection of regular dense sampling
in central part of wavenumber axis.

FIG. 15. Effect of sampling interval on migration noise for hor-
izontal reflection. Input spatial sampling intervals are (from
left to right): 12.5 m, 25 m, 33.3 m, and two random samplings
with 33.3 m interval on average. The two rightmost curves (ran-
dom sampling of input) show somewhat less migration noise
than the central curve for which the input data were regularly
sampled at 33.3 m. Note that regular sampling with a smaller
sampling interval of 25 m (second curve from the left) produces
less migration noise than the random input.
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The suppression of random noise, of course, is independent
of the sampling regime; it would only depend on the number
of samples contributing to each output sample.

Bin fractionation

Bin fractionation and flexi-bin are acquisition techniques for
orthogonal geometries which achieve finer midpoint spacing
than the natural bin size following from the shot and receiver
station intervals (Cordsen, 1993; GRI, 1994; Flentge, 1997).
Figure 16 illustrates the bin-fractionation technique. (In the
flexi-bin technique, a finer distribution of midpoints is achieved
by choosing line intervals which are a noninteger multiple of
the station intervals.) The question is: will the finer midpoint
spacing lead to better resolution?

With the bin-fractionation technique, the same cross-spreads
are acquired as in conventional acquisition with shot and
receiver locations not staggered. The only difference are the
sample positions. From the discussion in this paper, it should be
clear that potential resolution (being independent of sampling)
cannot be improved with the bin-fractionation technique. If an
improvement in resolution is to be achieved, it should be the
result of less sensitivity to coarse sampling, i.e., bin fractiona-
tion should produce less migration noise for the same coarse
sampling intervals.

The interleaving of cross-spreads using the bin-fractionation
technique may be compared with the interleaving of zero-offset
data sets. Two or more coarsely sampled but interleaved zero-
offset data sets form a new zero-offset data set with finer sam-
pling. The migration result of the combined data set will show
less migration noise than each of the original zero-offset data
sets because their migration noises are largely in antiphase.
However, overlapping and interleaved cross-spreads do not
form a new and better sampled single cross-spread. Therefore,
the migration noises of the cross-spreads will in general not be
in antiphase with each other, and just reduce each other ac-
cording to rules of fold. Even though the midpoint sampling
has improved, the sampling of the subsurface (illumination)
has not in general improved.

This reasoning is tested in Figure 17. It shows that coarsely
sampled interleaved zero-offset sections lead to a significant
reduction in migration noise when merged (leftmost curves).

FIG. 16. Sampling schemes in orthogonal geometry. Left: con-
ventional, right: bin fractionation. Squares and triangles repre-
sent shotpoint and receiver locations, respectively. Diamonds
represent the midpoint positions. The distance between mid-
points with bin fractionation is one quarter of the distance be-
tween the stations (in this example).

Also, a densely sampled cross-spread does not produce much
migration noise (rightmost curve). On the other hand, regular
coarse sampling of cross-spreads and staggered coarse sam-
pling of cross-spreads produce similar amounts of migration
noise, also after merging (central curves).

Fold and spatial resolution

The analysis of spatial resolution as given in Beylkin et al.
(1985) deals with single-fold 3-D data. As discussed above, it as-
sumes implicitly that the temporal and two spatial coordinates
have been sampled properly. If N-fold data are used, ideally
the data can be split into N such well-sampled single-fold sub-
sets (Vermeer, 1998c). For each subset, the potential resolution
can be analyzed. The resolution of the stack of the N migration
results will be some average of the resolutions of the contribut-
ing subsets (in the absence of any noise that does not satisfy
the velocity model; otherwise, such noises would influence the
resolvability of close events). As the best possible resolution
for a given midpoint range can be obtained with a 3-D single-
fold zero-offset gather, the resolution of the stack will be less
good than the resolution of that zero-offset gather. More on
this subject can be found in Levin (1998), where minimal data
sets are called “nonredundant data subsets.”

In case each contributing subset of an N-fold data set is
undersampled, giving rise to migration noise for each subset,
then the stack of the N single-fold migration results would re-
duce the noise. Now the achievable resolution (in any direc-
tion) of the stack of the N migration results should be better
than the achievable resolutions of the contributing subsets. Yet,
even with very large N, resolution cannot become better than
the limit imposed by the maximum frequency in the input data.
In an interesting physical modeling experiment, Markley et al.
(1996) show that fold improves resolution of coarsely sampled
data, but that the result cannot match the resolution of well-
sampled single-fold data.

FIG. 17. Migration noise for different acquisition strategies,
measured on a dipping event. The thin curves represent
coarsely sampled configurations with sampling interval of
33 m. From left to right: four zero-offset data sets, four reg-
ularly sampled cross-spreads, and four cross-spreads sampled
as indicated in Figure 16 on the right. The heavy curves are the
averaged results of each group of four coarsely sampled data
sets. The rightmost curve is the result for a single cross-spread
with 16.5-m shot and receiver station spacings. Note that bin
fractionation does not lead to a significant reduction of migra-
tion noise.
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DISCUSSION

All observations and conclusions in this paper have been de-
rived for a simple constant-velocity model. As such they pro-
vide valuable insight into various factors affecting spatial reso-
lution, but what about more complex models? In my opinion,
the results of this paper can be used as a first-order approxi-
mation to more complex situations. In case of doubt about the
applicability to more complex models, it is recommended to
apply Beylkin’s formula to those models. The main require-
ment is that the diffraction traveltimes can be computed for
the given velocity model and measurement configuration (ac-
quisition geometry and source wavelet). To avoid that fold will
confuse the issue, it is important to investigate resolution for
separate minimal data sets.

The theoretically best possible resolution (the potential re-
solution) cannot be improved by better sampling because it
already assumes perfect sampling. This truism applies to any
measurement model, not just to the simple model investi-
gated in this paper. However, it tends to be overlooked in
discussions on the relation between sampling and resolution.
Neidell (1997) denies the truism: “According to the Huygens’
approach, achievable resolution can be increased almost with-
out limit if we increase the redundancy of the wavefield
sampling.” Indeed, redundancy may increase achievable
resolution by reduction of noise and a more accurate evalu-
ation of the migration integrals, but the limits set by Beylkin’s
formula (maximum frequency of the source wavelet and steep-
est time dips in the diffraction traveltime surfaces) cannot be
tresspassed.

On the other hand, Beylkin’s formula only sets limits on
the range of wavenumbers. How this translates into minimum
resolvable distance depends on the proportionality factor c.
If amplitude information can be used [see remark following
equation (7b)] or if additional information is available [e.g.,
well information (Levin, 1998), or smoothness of an interface],
c may be considerably smaller than the value 0.71 following
from the Rayleigh criterion. This elusiveness of c might be the
reason of much confusion in resolution discussions.

The nature of the surface seismic acquisition technique
causes a difference between vertical and horizontal resolution.
It also causes a difference between the wavelets. In our case,
the Ricker wavelet remains a Ricker wavelet in the vertical di-
rection, but it turns into a Gaussian in the horizontal directions.
Different wavelets lead to different resolution measurements
(Kallweit and Wood, 1982). This difference leads to a complica-
tion when trying to compare horizontal and vertical resolution
on basis of measurements of the width of the main lobe of the
wavelet. I have dodged this issue by comparing only wavelets in
the horizontal direction for various situations; I only looked at
the vertical direction to investigate migration noise. Beylkin’s
formula is available to compute the range of wavenumbers in
(kx, ky, kz)-space allowing a comparison of those ranges in x, y,
and z.

The results for the bin-fractionation technique show that
the sampling of the minimal data sets of the geometry (cross-
spreads in this case) determines the achievable resolution, and
not the sampling density of the midpoints. On the other hand,
increasing the midpoint sampling density of the zero-offset
gathers did help, because now the midpoint sampling also de-
termines the sampling of the minimal data set. This raises an

interesting question about some intermediate situations. In ma-
rine streamer acquisition, the fold-of-coverage is smaller than
the number of different offsets (for single streamer and source
interval equal to or larger than the group interval). This means
that each offset is undersampled, and full single-fold coverage
can only be achieved by combining two or more neighboring
offsets. Would the migration noise produced by the merged
common-offset gathers be similarly reduced as for the zero-
offset gather in Figure 16, or would it be more like the results
for the two sets of cross-spreads shown in that figure? I suspect
that the merged gather is close enough to a minimal data set
to benefit from the denser midpoint sampling, but this needs
confirmation by further research.

Multisource multistreamer configurations cannot produce
3-D single-fold subsets which are well sampled (Vermeer, 1994,
1997). The shot/receiver azimuths in the common-offset gath-
ers of these surveys vary in a discontinuous way. As a conse-
quence, the diffraction traveltime curves in these gathers will
show irregularities, leading to some loss of achievable resolu-
tion. Differential feathering between streamers may aggravate
the problem. To what extent the spatial irregularities of these
and other geometries influence achievable resolution is a mat-
ter of further research.

CONCLUSIONS

In this paper, I have linked the description of spatial res-
olution given in Beylkin et al. (1985) to the more heuristic
approach to spatial resolution as given in, for example, Ebrom
et al. (1995a). The simple resolution formulas that apply to 2-D
data provide a lower limit to the minimum resolvable distance
that can be achieved with 3-D data.

Potential resolution (theoretically best possible resolution
for a given geometry and a correct velocity model) is deter-
mined by the spatial gradients of the diffraction traveltime
curves and the source wavelet. Beylkin’s formula links these
gradients to spatial wavenumbers.

Surface seismic data produce spatial resolutions that are
different in the horizontal and vertical directions. In this pa-
per, only constant-velocity models have been investigated. For
those models, horizontal resolution is determined mainly by
aperture of the seismic experiment and by the maximum fre-
quency in the source wavelet. The horizontal resolution also
depends on the seismic experiment configuration: for the same
range of midpoints, common-offset data have lower potential
resolution than zero-offset data, and in the in-line direction,
resolution of common-offset data is lower than in the cross-line
direction. Cross-spreads have better potential resolution than
3-D common-shot gathers, but have in general worse resolu-
tion than common-offset gathers. This puts some ranking on the
corresponding acquisition geometries. The vertical resolution
does not depend on aperture, but does depend on maximum
frequency and offset.

Potential resolution assumes perfect sampling. Sampling in-
fluences the correctness of the migration process to a large
extent because sampling is a way of approximating the migra-
tion integration formulas as derived for continuous shot and
receiver variables. Invalid migration results are obtained as
soon as the integrand in those formulas varies more rapidly
than sampling can follow, i.e., as soon as the data are aliased
along the integration paths.
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Migration noise (caused by coarse sampling) can also be
reduced by using quasi-random sampling instead of regular
sampling. However, as dense regular sampling would minimize
migration noise, quasi-random coarse sampling cannot match
the quality obtainable with regular dense sampling.

Staggered sampling of the acquisition lines (the bin-
fractionation technique) produces a denser sampling of mid-
points, but it does not compensate for coarse sampling.

Noise in the data will reduce the achievable resolution.
Therefore, increasing fold will virtually always improve achiev-
able resolution, even though it would in general not improve
potential resolution. This applies to noise in the form of am-
bient noise, ground roll, and multiples, as well as to migration
noise caused by coarse sampling.

All results and conclusions are based on investigations using
a simple constant-velocity model. As such, it provides some
valuable insights, which might also apply to more complex
models.
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