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The theory of spatial resolution has been well-established in various papers dealing with inversion and prestack migra-
tion. Nevertheless, there is a continuing flow of papers being published on spatial resolution, in particular in relation to
spatial sampling. This poster paper continues the discussion, and deals with various factors affecting spatial resolution. 

The theoretically best possible resolution can be predicted using Beylkin’s formula. This formula gives answers on
the effect of frequency, aperture, offset and acquisition geometry. In this paper these factors are investigated using a sin-
gle diffractor in a constant-velocity medium. The width of the spatial wavelet resulting from migration of the diffraction
event is compared with the predicted resolution. Theoretically, zero-offset data produce the best possible resolution and
3-D shots the worst, with common-offset gathers and cross-spreads scoring intermediate.

The effects of sampling and fold cannot be directly derived from Beylkin’s formula, these effects are analyzed by look-
ing at the migration noise rather than at the width of the spatial wavelet. Random coarse sampling may produce some-
what less migration noise than regular coarse sampling, though it cannot be as good as regular dense sampling. The
bin-fractionation technique does not achieve higher resolution than conventional sampling.

Generally speaking, increasing fold will not improve the theoretically best possible resolution. However, as noise always
has a detrimental effect on the resolvability of events, fold — by reducing noise — will improve resolution in practice.
This also applies to migration noise as a product of coarse sampling.

This poster paper is modeled after a poster paper presented at the
1997 SEG Summer Research Workshop in Vail.

Some theory first. Frame 1 extends an important
result from the literature on temporal resolution to
spatial resolution: As long as the coverage of the
small wavenumbers is complete, it is justified to use
the maximum wavenumbers as a measure for spa-
tial resolution.

Maximum wavenumbers can be conveniently
determined using Beylkin’s formula. This formula
was derived as part of a larger objective, i.e., the
derivation of migration formulas for single-fold 3-D
datasets (also called minimal data sets), which have
two varying spatial coordinates ξ1 and ξ2, and trav-
eltime t as the third coordinate (for examples see
frame 2).

Beylkin’s formula (see frame 3) allows the com-
putation of the wavenumber vector k = (kx, ky, kz) from
frequency f and ∇ xf (x, ξ), the derivative of f (x, ξ) with
respect to the output point x.

3-D single-fold data sets (minimal data sets)
3-D data set shot position xs receiver position xr

3-D shot (X, Y,0) (ξ1, ξ2, 0)
3-D receiver (ξ1, ξ2, 0) (X, Y,0)
cross-spread (X, ξ2, 0) (ξ1, Y, 0)
common-offset (ξ1 - Hx, ξ2 - Hy, 0) (ξ1+Hx, ξ2+Hy, 0)
X, Y, Hx and Hy are fixed, ξ1 and ξ2 vary.

The resolution that can be computed from Beylkin’s for-
mula is the theoretically best possible resolution. This poten-
tial resolution depends on geometry, velocity model, source
wavelet and output position, and it assumes perfect sam-
pling. In the presence of noise and with less than perfect
sampling, the achievable resolution will be less good than the
potential resolution.

Lessons from temporal resolution investigations

In a classic paper Kallweit and Wood (GEOPHYSICS, 1982) 
discuss how various criteria (Rayleigh, Ricker, Widess 
criteria) can be used to describe the width of a wavelet as a mea-
sure of temporal resolution. Knapp (GEOPHYSICS, 1990) expands
on that work and concludes that

temporal resolution is proportional to maximum frequency

(though strictly speaking to bandwidth). Their results can be
extended into the realm of spatial resolution, i.e., 

spatial resolution is proportional to maximum wavenumber,

and,

the minimum resolvable distance is inversely proportional
to maximum wavenumber.

Beylkin’s formula

Spatial resolution is described by wavenumber 
spectrum of migration operator

k = f ∇ xφ(x, ξ)

where
f (x, ξ) = τ(x, xs) + τ(x, xr)

is diffraction traveltime surface and ξ = (ξ1,ξ2)
describes the two spatial variables of a minimal
data set.

Note. If k is written as 

k = ks + kr,

then ks and kr indicate the direction at x of the
raypath from shot to x, and from x to receiver, 
respectively.
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Effect of aperture and offset in common-offset
configuration

Effect of aperture in zero-offset configuration

Fit with Beylkin’s formula

Aperture. Aperture is a major factor determining
horizontal resolution. On this page analysis results
for a line of sources and receivers are shown (2-D).
The diffractor is located below the center of the line.
On the right the spatial wavelets are shown for var-
ious zero-offset configurations, and in the bottom
right corner the measured widths are compared with
the prediction from Beylkin’s formula. Note the
diminishing returns for increasing line lengths: for
line lengths larger than 2000 m the widths of the spa-
tial wavelet are virtually the same.

Below, the effect of offset is included. The 
steepness of the diffraction traveltime curves at the
edge of the midpoint range determines the horizon-
tal resolution. The longer the offset the worse the 
resolution, and the wider the midpoint range the
better the resolution.

Procedure to estimate horizontal resolution.
• Model: constant velocity with single diffractor at depth

500 m, source is 50 Hz Ricker wavelet
• For various shot/receiver configurations compute

(using true-amplitude migration formula) horizontal
spatial wavelet at level of diffractor

(Ricker wavelet is turned into bell-shaped
(Gaussian) wavelet, provided k = 0 is included in
measurement configuration)

• Use widths of various spatial wavelets as a measure of 
spatial resolution

• Compare widths and explain using Beylkin’s 
formula

A simple formula for 2-D common-offset 
gathers. Applying Beylkin’s formula to a medium
with constant velocity v leads to simple formulas for
horizontal and vertical resolution as indicated on
the right. Note that the horizontal resolution is deter-
mined by the farthest shot-receiver pair. The wider
the midpoint range (the aperture), the steeper the
dips that can be illuminated, and the smaller the
minimum resolvable distance in the x-direction Rx.
The best vertical resolution is determined by the shot-
receiver pair which is closest to the output point. For
zero-offset, the reflection angle i = 0; then the for-
mulas change into more familiar formulas.

Various factors affecting resolution:
Aperture
Geometry

Fold
Sampling
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Behavior of kx and ky for various minimal data sets

Resolution in x of different minimal data sets 

Effect of fold

Wavenumber spectra
zero offset offset 1000 m cross-spread 3-D shot

Geometry. The diffraction traveltime curves in Beylkin’s
formula are different for different minimal data sets. On
this page the effect on resolution is investigated for dif-
ferent choices of geometry. The midpoint area of the
datasets is the same in all experiments (left).

Along the top the wavenumber spectra are shown for
four different minimal datasets, for two different fre-
quencies of the input data. The four boxes all have the same
size: by comparison, the zero-offset wavenumber spec-
trum is the widest, and should give the best resolution.
Note that a single input frequency covers all horizontal
wavenumbers up to some maximum wavenumber: for
optimal horizontal resolution, a single frequency suffices.
On the other hand, a single frequency covers only a 
limited range in the vertical direction: for optimal vertical
resolution the broadest bandwidth is required.

On the left the projections of the various wavenumber
spectra in (kx, ky) are plotted in one figure, allowing a direct
comparison. Note the asymmetry in the resolution of the
1000 m offset section: a wider wavenumber range in kythan
in kx means better resolution in the crossline direction than
in the inline direction.

The spatial wavelets shown in the bottom left confirm
the predictions that can be made from the computed
wavenumber spectra.

Fold. The migration formulas do not cater for overlapping
single-fold data sets. As a consequence, the potential res-
olution of multi-fold data is some average of the potential
resolutions of the contributing single-fold data (see below).
Yet, fold improves achievable resolution.

Wavenumber spectrum
achievable with common-
offset section

Wavenumber spectrum
achievable with another
comm-offset section (longer
offset)

Wavenumber spectrum of
two-fold data is some

• Fold tends to skew wavenumber spectrum in
output, hence potential resolution is some
average of single-fold resolutions (worse
than best, better than worst)

• Fold tends to reduce noise, hence tends to

Configuration for geometry comparisons

Single-fold minimal data sets

zero-offset gather 

common-offset gathers 
(offsets 600, 1000 m)

cross-spread

common-shot gather

Same square midpoint area of 
(-500,500) x (-500,500) m

Diffraction in center of midpoint area at depth 500 m

Normalized amplitudes True amplitudes



Cross-spread sampling schemes

Conventional Bin fractionation

Effect of midpoint grid on migration noise

Effect of sampling density (horizontal event).

Bin fractionation. On the right (top), conventional sam-
pling is compared with sampling using the bin-fractiona-
tion technique. The station spacings in the two sampling
techniques are the same, but in the bin-fractionation tech-
nique the midpoint spacing is smaller. The question is, does
this lead to better resolution?

On the right (bottom) I investigate the amount of migra-
tion noise using a dipping interface. The orange curves cor-
respond to coarsely sampled data sets, from left to right:
four zero-offset data sets, four regularly sampled cross-
spreads and four cross-spreads sampled with the bin frac-
tionation technique. When the four zero-offset sections are
combined we get a new single-fold zero-offset section with
much better sampling, indicated by the blue curve which
shows much less migration noise. Combining the other
datasets does not lead to better sampled datasets, only to
higher fold, and migration noise is now reduced accord-
ing to rules of fold in both cases. In other words, bin frac-
tionation does not compensate for coarse sampling, even
though the midpoint sampling interval has been reduced. 

On the far right, the result is shown for a single cross-
spread, but now sampled with station spacings that are
halved. This curve, and all of the three blue curves repre-
sent results for the same number of input traces. Increasing
fold only reduces migration noise, but finer sampling may
prevent migration noise.

Sampling. As pointed out on the first page, potential reso-
lution assumes perfect sampling. It turns out that sampling
differences have little influence on the widths of the result-
ing spatial wavelets. Instead, it is more telling to use the
amount of migration noise resulting from inadequate sam-
pling as a yardstick. Along the top part of this page the effect
of random and coarse sampling is looked at, along the bot-
tom part the effect of bin fractionation.

Random sampling. To understand the effect of sampling on
the migration result (and hence on spatial resolution), it is
useful to describe the migration process as a two-step pro-
cedure: first, the data are collected along the diffraction trav-
eltime curves corresponding to the output point. This process
converts all data contributing to that output point into a new
data set, in which the diffraction event from a diffractor in
the output point is turned into a horizontal event (see “Output
at x = 0” on the left). The second step is to stack all this data
into a single trace at the output point. 

The response of this second step can be described as a stack
operator which depends on sampling (see graphs to the left).
Regular sampling leads to an alias (peak) in the operator
which does not do any harm for dense regular sampling, but
which may pass noise for coarse regular sampling. In that case
random sampling can be a better alternative as it avoids the
large peak in the response. 

The bottom figure on the left confirms that dense sam-
pling gives the best result, and that random coarse sampling
may produce less migration noise than regular coarse sam-
pling. These experiments were carried out for 2-D data; for
3-D, the migration of regularly sampled data has already an
element of randomness, because the migration process is a
function of the distance from input point to output point.
These distances are not regularly distributed in 3-D. 

Random sampling (with the right randomness) in the
field is difficult to achieve, fortunately, there is no need for
it.

Realignment by migration operator.

Response of migration summation operator.



Related papers

Beylkin’s formula can be found in Beylkin et al. (1985, Spatial
resolution of migration algorithms: in Berkhout et al., Eds.,
Proceedings of the 14th Internat. Symp. on Acoust. Imag.). I learnt
about Beylkin’s formula from the papers by Von Seggern
(GEOPHYSICS, 1991 and 1994). Von Seggern (1994) also treated spa-
tial resolution of 3-D data, but his results are often difficult to
explain (“counter-intuitive”), because multifold data were used for
all computations. Beylkin’s formula for spatial resolution formal-
izes a measurement of resolution which is not unique: Wu and
Toksöz  (GEOPHYSICS, 1987) and many other authors (e.g., Goulty,
First Break, October 1997) on crosswell imaging also map spatial
information to the wavenumber domain. 

Eventually, an expanded version of this paper may be found
in GEOPHYSICS. The term “minimal data sets” was coined by Padhi
in an internal Shell paper, and recently proposed in the open 
literature (Padhi and Holley, TLE, February 1997). 

Random sampling is discussed in Sun et al. (GEOPHYSICS, 1997).
The bin-fractionation technique was first proposed by Cordsen

(1993, Flexi-bin 3-D seismic acquisition method: CSEG. Ann. Mtg.
Abstracts), but claims to fame may also be found in a 1994 publi-
cation of the US Gas Research Institute, (Staggered-line 3-D 
seismic recording) and in a US Patent (Flentge, 1997, US Patent
5598378.)

A source for much discussion are Neidell’s papers on resolu-
tion, including the four-part series published in TLE (July-October
1997). The conclusions of this paper contradict those of Neidell to
some extent.

Conclusions
• Beylkin’s formula describes potential resolu-

tion, the theoretically best possible resolution
• Potential resolution depends on geometry,

velocity model and source wavelet
• The potential resolution can only be achieved

with proper sampling and if there is no noise
• The wider the aperture of the surface seismic

the better the horizontal resolution
• Vertical resolution is best if the apex of the dif-

fraction traveltime is included in the aperture
• Different single-fold 3-D datasets have dif-

ferent resolutions for the same midpoint area,
best for zero offset, worst for 3-D shots

• Fold may reduce potential resolution, but
tends to improve achievable resolution by
noise reduction

• Coarse sampling reduces achievable resolu-
tion

• Random coarse sampling may reduce migra-
tion noise

• The bin fractionation technique does not lead
to less migration noise than conventional
sampling
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Discussion. Beylkin’s formula provides an easy means to compute the theoretically best possible resolution for any 
single-fold measurement configuration, any velocity model and any source wavelet. In a somewhat disguised form the
formula is nothing else than the more familiar formula k = f / v, in which v is apparent velocity. The minimum apparent
velocity that can be reached is equal to the medium velocity V, and this provides an upper limit to the potential resolu-
tion. The maximum frequency fmax depends on the source wavelet,  hence the upper limit of spatial resolution would be
reached for k = fmax / V. Moreover, normally the measurement configuration does not allow acquisition of the smallest
apparent velocities, certainly not in all spatial dimensions, and therefore spatial resolution is also limited by the 
measurement configuration. 

Fold is normally needed for noise reduction, fold will also reduce migration noise caused by the effects of coarse 
sampling, but the best possible resolution can only be reached if the integrands in the migration summation process are
properly sampled. Edges in a geometry will produce edge effects which negatively affect the achievable resolution. Therefore,
the number of edges in a geometry should be minimized. This means for instance that brick-wall geometries should not
be used if maximum resolution is aimed for.

Finally, a “quiz” for the reader: which one of the two seismic sections below had the broader bandwidth and the finer
sampling?



From TLE, February 1999:

Dear Editor,

In "Factors affecting spatial resolution" (TLE, August 1998) I discuss wavenumber spectra for various
minimal data sets (p.1028) and state: "for optimal horizontal resolution, a single frequency suffices"
and "for optimal vertical resolution the broadest bandwidth is required". These statements show that I
did not really understand the meaning of the wavenumber spectra. Indeed, Beylkin's formula maps a
single frequency into a wide range of wavenumbers. However, this only means that the minimal data
set has illuminated a wide range of dip directions (each shot/receiver pair its own direction at the image
point). For optimal resolution in all of those directions each source in the minimal data set still needs to
be broadband.

Again, a single frequency does generate a wide range of output wavenumbers. Converting back from
depth to time these wavenumbers correspond with a wide range of frequencies with the largest
frequency equal to the input frequency. For a point scatterer, these output frequencies may produce a
rather narrow pulse as shown in Neidell (TLE, September 1997, p.1240, 1242). The width of that pulse
decreases with increasing input frequency. However, with a single frequency, the central pulse is
surrounded by strong sidelobes, whereas a source wavelet with a smooth frequency spectrum would
produce an output pulse without sidelobes.

Gijs J.O. Vermeer


