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3-D symmetric sampling

Gijs J. O. Vermeer∗

ABSTRACT

Three-dimensional seismic surveys have become ac-
cepted in the industry as a means of acquiring detailed
information on the subsurface. Yet, the cost of 3-D seis-
mic data acquisition is and will always be considerable,
making it highly important to select the right 3-D acqui-
sition geometry. Up till now, no really comprehensive
theory existed to tell what constitutes a good 3-D ge-
ometry and how such a geometry can be designed. The
theory of 3-D symmetric sampling proposed in this pa-
per is intended to fill this gap and may serve as a sound
basis for 3-D geometry design and analysis.

Methods and theories for the design of 2-D surveys
were developed in the 1980s. Anstey proposed the stack-
array approach, Ongkiehong and Askin the hands-off ac-
quisition technique, and Vermeer introduced symmetric
sampling theory. In this paper, the theory of symmet-
ric sampling for 2-D geometries is expanded to the most
important 3-D geometries currently in use. Essential ele-
ments in 3-D symmetric sampling are the spatial proper-
ties of a geometry. Spatial aspects are important because
most seismic processing programs operate in some spa-
tial domain by combining neighboring traces into new
output traces, and because it is the spatial behavior of
the 3-D seismic volume that the interpreter has to trans-
late into maps.

Over time, various survey geometries have been de-
vised for the acquisition of 3-D seismic data. All geome-

tries constitute some compromise with respect to full
sampling of the 5-D prestack wavefield (four spatial co-
ordinates describing shot and receiver position, and trav-
eltime as fifth coordinate). It turns out that most geome-
tries can be considered as a collection of 3-D subsets of
the 5-D wavefield, each subset having only two varying
spatial coordinates. The spatial attributes of the traces in
each subset vary slowly and regularly, and this property
provides spatial continuity to the 3-D survey. The spatial
continuity can be exploited optimally if the subsets are
properly sampled and if their extent is maximized.

The 2-D symmetric sampling criteria—equal shot and
receiver intervals, and equal shot and receiver patterns—
apply also to 3-D symmetric sampling but have to be
supplemented with additional criteria that are different
for different geometries. The additional criterion for or-
thogonal geometry (geometry with parallel shotlines or-
thogonal to parallel receiver lines) is to ensure that the
maximum cross-line offset is equal to the maximum in-
line offset.

Three-dimensional symmetric sampling simplifies the
design of 3-D acquisition geometries. A simple checklist
of geophysical requirements (spatial continuity, resolu-
tion, mappability of shallow and deep objectives, and
signal-to-noise ratio) limits the choice of survey param-
eters. In these considerations, offset and azimuth distri-
butions are implicitly being taken care of.

The implementation in the field requires careful plan-
ning to prevent loss of spatial continuity.

INTRODUCTION

Since the early 1980s, there has been a steady increase in
the number of 3-D surveys acquired each year. Continuing
improvements in technology have made it possible to make
3-D seismic data acquisition more and more efficient and cost-
effective. Yet, a clear theory as to what constitutes a good 3-D
acquisition geometry has not been available, and much of the
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design of 3-D acquisition geometries has been based on ear-
lier experience—what seemed to have worked in the past was
adopted for the future—and on the possibilities and limitations
of the available equipment (Stone, 1994). In this paper, I pro-
vide a theoretical framework for the design of 3-D acquisition
geometries suitable for both marine and land data acquisition.

Quite rightly, many current design techniques for 3-D ge-
ometries attempt to extend to 3-D what had been learned
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from the design of 2-D geometries. A breakthrough in thinking
about 2-D geometries was provided in Anstey’s paper (1986)
“Whatever happened to ground roll?”. Anstey argued that the
combination of field arrays and stacking takes care of ade-
quate suppression of ground roll, provided the offset distribu-
tion in the common midpoint (CMP) is regular and dense, the
so-called stack-array concept. Ongkiehong and Askin (1988)
proposed the hands-off seismic data acquisition concept. They
argued that the distance between elements in an array and the
length of the contiguous arrays is fully determined by signal ve-
locity and required bandwidth. These ideas are encompassed
and reexplained by the symmetric sampling theory introduced
in Vermeer (1990, 1991). In symmetric sampling, both shots
and receivers have to be sampled in the same way, including the
shot and receiver arrays. In this theory, a regular offset distri-
bution in the CMP gather is a consequence of the requirement
of symmetric sampling.

Anstey’s (1986) considerations on offset distributions valid
for 2-D could be applied also to 3-D marine streamer acqui-
sition because it is basically 3-D by repeating 2-D. However,
these considerations are not applicable generally to land-type
acquisition geometries such as the orthogonal arrangement of
shot and receiver lines. On the other hand, 2-D symmetric sam-
pling theory can be extended to 3-D for all types of common
3-D geometries. As we shall see, symmetric sampling of the 2-D
seismic line is in fact a special case of 3-D symmetric sampling.
At the 1994 SEG annual meeting, I first proposed the 3-D sym-
metric sampling technique (Vermeer, 1994). The present paper
provides a more comprehensive description.

In 2-D, the sampling problem is one of sampling the 3-D
wavefield W(t, xs, xr ) with temporal coordinate t , shot coordi-
nate xs, and receiver coordinate xr . In 2-D symmetric sampling,
the two spatial (shot and receiver) coordinates are sampled
in the same way. Using sufficiently small sampling intervals
allows the faithful reconstruction of the underlying continuous
wavefield, i.e., it maintains the spatial continuity of the wave-
field W(t, xs, xr ).

In 3-D, we are faced with the sampling of a 5-D wavefield
W(t, xs, ys, xr , yr ), now with shot ys and receiver yr as addi-
tional spatial coordinates. It would be prohibitively expensive
to completely sample this 5-D wavefield, as this would mean
filling the whole survey area with a dense coverage of both
shots and receivers. As a compromise, 3-D symmetric sam-
pling settles for the more affordable aim of correct sampling
of overlapping single-fold 3-D subsets of the 5-D wavefield
W(t, xs, ys, xr , yr ). Such correctly sampled subsets are suitable
for imaging of the subsurface with the right resolution (pro-
vided the source wavelet has a suitably wide bandwidth) using
prestack migration (Beylkin, 1985; Beylkin et al., 1985; Cohen
et al., 1986; Bleistein, 1987; Schleicher et al., 1993). The subsets
have to be spatially overlapping (multifold acquisition) to gain
redundancy for an adequate signal-to-noise ratio and to allow
velocity analysis.

To set the scene, I first show that geometries most commonly
used are either members of the class of areal geometries or
members of the class of line geometries. The line geometries
can be subdivided further into parallel, orthogonal, and zigzag
geometries. I then extend some of the results of Vermeer (1990)
to a description of some properties of the continuous wavefield
and various 3-D subsets of that wavefield. These properties are
used to describe the requirements of symmetric sampling of the
two spatial coordinates of each subset.

Next, I discuss the link between symmetric sampling and the
design of 3-D geometries and how that link should influence
the implementation of the design in the presence of obstacles
in the field. Though not substantiated with examples, it is plau-
sible that 3-D symmetric sampling can be exploited beneficially
in prestack processing. Finally, I show that for low-fold data,
the offset distribution should be irregular for the best stack
response.

In this paper, I do not discuss multicomponent recording sep-
arately, though most results apply without major modification.

CLASSES OF 3-D GEOMETRIES

Alias-free sampling of all four spatial (surface) coordinates
of the 5-D prestack wavefield W(t, xs, ys, xr , yr ) would mean
that each shot should be recorded by a dense areal grid of re-
ceivers and that the shotpoints should also occupy a dense areal
grid. Virtually nobody can afford this full sampling of W(t,
xs, ys, xr , yr ). Instead, a wide variety of geometries has been
devised based on a sparser sampling of shots and/or receivers.

Most solutions to the seismic sampling problem can be clas-
sified into one of two main classes: (1) the receivers listening
to each shot still occupy a dense areal grid, but the shots are
sampled in only a coarse grid (or the other way around), and
(2) the receivers listening to each shot are densely sampled
along one or more parallel receiver lines, whereas the shots
are densely sampled along parallel shotlines. The geometries
in the first class are called areal geometries, whereas those in
the second class are called line geometries. Depending on the
orientation of the shotlines with respect to the receiver lines,
the line geometries can be subdivided into three main types:
parallel, orthogonal, and zigzag. Figure 1 provides a pictorial
description of areal and line geometries. Note that the shot-
lines in the main types of line geometries are parallel to each
other, whereas the receiver lines are also parallel to each other
(in zigzag geometry, there are two sets of parallel shotlines
making an angle of ±45◦ with the parallel receiver lines).

[In Vermeer (1994), I used the term “patch” for the areal
geometry. The term “patch” was adopted from the geometry
described in Crews et al. (1989). They use areal patches of
geophones listening to a sparse grid of shots. Unfortunately, the
term patch is used in the geophysical industry also for particular
implementations of line geometries. Therefore, in this paper I
have opted for the name “areal” to emphasize the difference
with line geometries. Of course, all geometries want to achieve
an areal coverage.]

Virtually all geometries can be classified as areal or line ge-
ometries. Random geometries are characterized by the absence
of regularity in the shot and receiver positions.

Examples of various geometries

Areal geometry provides either 3-D common-shot gathers
(as defined by an areal grid of receivers listening to a shot in
the center of the grid) or 3-D common-receiver gathers. The
idea to acquire 3-D common-shot gathers with a 2-D array of
receivers was patented as early as 1960 (Becker, 1960). Walton
(1971) called the 3-D common-shot gather “The dream.” Part
of his dream was to hover with a helicopter over the area on
a dark night and watch the geophones light up when a sound
wave hit them. [A modern version of this idea using laser in-
terferometry is described in Berni (1994).] It turned out to be
more practical to invoke reciprocity and to use an areal grid
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of thumper positions being recorded in a geophone patch in
the center. Esso (now Exxon) used this technique in several
surveys (Walton, 1971), but abandoned it in favor of the more
cost-effective “X” spread technique.

The technology in the 1970s was not yet advanced enough
to allow multiple-coverage areal geometries. This changed in
the 1980s, and Crews et al. (1989) contains an acquisition tech-
nique that is reminiscent of multiple-coverage areal geometry.
However, instead of a full areal grid, each shot is recorded by
a checkerboard pattern of geophone stations. It would require
double the effort to acquire a true areal geometry. On land,
this is kind of a tall order, as obstructions usually abound.

With the advent of stationary recording systems in marine
data acquisition, it is becoming feasible (though still quite time-
consuming) to record 3-D common-receiver gathers with re-
ceiver stations located on the sea bottom (or anchored to the
sea bottom) and with shots fired in a dense areal grid. A ge-
ometry coming close to the ideal areal geometry is described
in Moldoveanu et al. (1994). They used a dual-hydrophone
Digiseis system for undershooting of platforms. An interesting
aspect of this geometry is that zr , the depth coordinate of the
receiver, is sampled twice.

[In the introduction, I omitted the depth coordinate from
the prestack wavefield because this coordinate is not a variable
being sampled in surface seismic data acquisition. (Of course, in
VSP acquisition, depth is a major spatial coordinate.) An areal
geometry in which zr is sampled up to 16 times is described in
Stubblefield (1990) and in Krail (1991, 1993).]

Depending on the conditions in the survey area, one of the
various line geometries is usually the most efficient in terms of
progress per square kilometer, and this might be the decisive
factor in choosing the type of line geometry. It goes without
saying that the most efficient geometry does not necessarily
produce the best quality.

Parallel geometry is basically an extension of 2-D geom-
etry where the shot lines and receiver lines are collinear. It
is used mainly for marine data acquisition, using multisource
and multistreamer configurations (e.g., quad/quad geometry;

FIG. 1. Classes of 3-D acquisition geometries: (a) areal, (b) orthogonal, (c) zigzag, and (d) parallel. Areal geometry is based on
widely spaced shot stations covered areally by receiver stations (or the other way around). The small square and the large square
respectively indicate the midpoint area and the receiver area for a shot in the center of the squares. Orthogonal geometry is
characterized by widely spaced parallel shot lines perpendicular to widely spaced parallel receiver lines. In zigzag geometry, two
families of widely spaced parallel shot lines make angles of ±45◦ with widely spaced parallel receiver lines. In parallel geometry,
both shot and receiver lines are parallel with each other; the lines may or may not be widely spaced.

Naylor, 1990), but it has also been used on land (e.g., Dickinson
et al., 1990). In quad/quad geometry, four sources are alter-
nately fired into four streamers. Each source records its own
four midpoint lines, leading to 16 parallel midpoint lines. As the
seismic vessel has to maintain speed during the firing cycle, the
distance between shots in a midpoint line must be large, lead-
ing to relatively low fold. This shortcoming has been solved
by recent developments in marine acquisition technology,
allowing towing of 8–12 streamers by one vessel. With two
sources, modern seismic vessels can also produce 16 or more
midpoint lines in one boat pass, while doubling the fold as com-
pared to using four sources.

An interesting example of marine data acquisition using
parallel acquisition lines is (concentric) circle shoot geome-
try (Durrani et al., 1987; Reilly, 1995). In this geometry, shot
and receiver lines are (nearly) concentric circles. It is a typical
example of a target-oriented geometry, the center of all circular
lines being the known position of a salt dome.

In parallel geometry, the survey area is still covered rather
densely with shots and receivers. In the 1960s, it was already
discovered that an orthogonal arrangement of a shot line and
a receiver line could produce areal midpoint coverage with-
out requiring an areal coverage of shots and receivers (Ball
and Mounce, 1967). In the late 1960s, Esso acquired single-fold
3-D surveys consisting of single “X” spreads or cross-spreads
(Walton, 1971, 1972). Properties of the cross-spread and inter-
pretation techniques based on timeslices through cross-spreads
are discussed in Dunkin and Levin (1971). In those days, the
single-fold cross-spreads were still a big burden to the inter-
preter but, with the advent of digital processing, the data from
partially overlapping cross-spreads could be stacked and mi-
grated for easier interpretation (Dürschner, 1984). Recently,
Lee et al. (1994) discussed migration results of partially over-
lapping cross-spreads.

The idea of areal midpoint coverage by orthogonal shot
and receiver lines is fully exploited in orthogonal geometry.
In this geometry, widely spaced parallel shotlines are perpen-
dicular to widely spaced parallel receiver lines (see Figure 1).
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This is a typical land geometry, allowing 3-D coverage with
a minimum of field effort. There are numerous variations on
this theme, with brick-wall geometry and cross-spread geom-
etry (Dickinson et al., 1990) as the two main implementa-
tions. In brick-wall geometry, staggered shotlines are used; in
cross-spread geometry, the shotlines are sampled more or less
regularly. Orthogonal geometry may also be used for marine
data acquisition using ocean-bottom cables.

Zigzag geometry is another land geometry, but now the shots
are fired along zigzag lines between the receiver lines. Zigzags
between adjacent pairs of receiver lines are arranged such that
two sets of parallel shotlines are obtained eventually (see Fig-
ure 1). The zigzag geometry is very efficient for data acquisition
in deserts (Onderwaater et al., 1996; Wams and Rozemond,
1997).

[Apart from the three main types of line geometries, the seis-
loop method (Ritchie, 1991)—an early attempt at cost-effective
3-D land acquisition—may also be mentioned. In this geometry
areal midpoint coverage is reached by distributing shots and
receivers along a closed loop of (curved) lines as, for instance,
provided by a road system.]

An example of random geometry is described in Bertelli
et al. (1993), where it is applied in an area surrounding the city
of Milan, Italy.

THE CONTINUOUS WAVEFIELD

In the literature dealing with migration and inversion (e.g.,
Beylkin et al., 1985; Cohen et al., 1986; Schleicher et al., 1993),
it is often tacitly assumed that the seismic wavefield is a con-
tinuous function of its temporal and spatial variables. The as-
sumption of continuity, of course, is justified for the wavefield
generated by a single source (apart from near-field disconti-
nuities in case of dynamite as a source). The justification of
the assumption of continuity as a function of source coordi-
nates is based on an idealized world in which there are no
source wavelet variations. In the following, I also assume that
W(t, xs, ys, xr , yr ) can be considered as a continuous function
of its variables.

This section deals with the properties of this continuous
wavefield to establish requirements for proper sampling. In the
acquisition of seismic data, the 5-D wavefield W(t, xs, ys, xr , yr )
is sampled at individual source and receiver locations. The as-
sumption of continuity means that small shifts in source or
receiver position would lead to only small changes in the wave-
field. Proper sampling of the continuous wavefield allows full
reconstruction of that wavefield.

The shot/receiver and midpoint/offset coordinate systems

As in the 2-D case discussed in Vermeer (1990), we can ex-
press the wavefield not only in the shot and receiver coordi-
nates, but also in the midpoint and offset coordinates. It is
often convenient to use half-offset rather than offset. The mid-
point and half-offset coordinates (xm, h) can be expressed in
the shot/receiver coordinates (xs, xr ):

xm = (xr + xs)/2
(1)

h = (xr − xs)/2

in which vector notation is used for each coordinate pair. The
orientation of h(hx, hy) describes the shot/receiver azimuth,

whereas hx and hy describe what are also called in-line offset
and cross-line offset, respectively.

The reciprocity theorem

In the description of the properties of the 5-D wavefield
W(t, xs, ys, xr , yr ), the reciprocity theorem plays an impor-
tant role. The theorem says that, under certain conditions
(see, e.g., Vermeer, 1990), two seismic experiments in which
the position of shot and receiver are interchanged lead to
the same recorded trace. A consequence of the reciprocity
theorem is that a 3-D common-shot gather W(t, x, y, xr , yr )
shot at point (x, y) would consist of the same data as a 3-D
common-receiver gather W(t, xs, ys, x, y) recorded in the same
point (x, y). Therefore, the properties of the wavefield in the
common-receiver gather, consisting of a large number of dif-
ferent seismic experiments, are the same as the properties of
the wavefield of the common-shot gather obtained in a single
seismic experiment.

3-D subsets of 5-D wavefield

It is interesting to consider various 3-D subsets (cross-
sections) of the 5-D prestack wavefield. In these subsets, we
keep the temporal coordinate, together with two spatial co-
ordinates. For instance, in case the two varying spatial coor-
dinates are xr and yr , then the subset corresponds to a single
shot. It turns out that (except for random geometry) each of
the acquisition geometries introduced in “Classes of 3-D ge-
ometries” has its own subsets. I call these subsets basic subsets
of the geometry. Table 1 lists them. Note that in the column
with “Description”, it is assumed implicitly that each subset is
a continuous function of its variables. X and Y are fixed points.
Figure 2 illustrates how the various subsets can be generated
in the field, keeping two coordinates fixed, while allowing two
other coordinates to vary.

The areal geometries can be thought of as either a collec-
tion of single-fold 3-D common-shot gathers or single-fold
3-D common-receiver gathers. For the time being, we assume
a continuous areal coverage of receivers for the geometry with
widely spaced shots and, similarly, a continuous areal coverage
of shots for the geometry with widely spaced receivers.

Considering each shot line and each receiver line in the line
geometries as a continuous coverage of shots and receivers
along those lines leads naturally to the basic subsets of the
line geometries. A basic subset is formed by all traces that
have a shot line and a receiver line in common. For orthogo-
nal geometry, the basic subset is called the cross-spread (also

Table 1. Basic subsets of various 3-D geometries in 5-D
prestack wavefield.

Geometry Basic subset Description

Areal 3-D common W(t, X,Y, xr , yr )
shot

3-D common W(t, xs, ys, X,Y)
receiver

Orthogonal Cross-spread W(t, X, ys, xr ,Y)
Zigzag Zig spread W(t, xs, xs + Y − X, xr ,Y)

Zag spread W(t, xs,−xs + Y + X, xr ,Y)
Parallel Midpoint line W(t, xs,Y, xr ,Y)

Common-offset W(t, xs, ys, xs + X, ys)
gather
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for brick-wall geometry, see next section). In zigzag geometry,
we have zig- and zag-spreads (because of the two orthogonal
families of shot lines), and in parallel geometry the combina-
tion of a shot line and a receiver line is just the midpoint line.
In the ideal parallel geometry, the common-offset gather with
constant azimuth is another 3-D subset. Figure 3 schematically
illustrates the subsets of the line geometries.

All basic subsets are also single-fold, except the midpoint
line. The midpoint line does not provide areal coverage, where-
as the other subsets do. The number of overlapping single-fold
subsets at any point determines the fold-of-coverage in that
point (see also the Appendix).

Because each subset is generated in its own specific way, each
subset will see the same subsurface structure in a different way.
This is illustrated in Figure 4 for a diffractor and for a dipping
plane in a constant-velocity medium. The traveltime contours
are shown for a 3-D common-shot gather, a cross-spread, a zig-
spread, and for a common-offset gather with constant azimuth.
The contours are displayed as a function of the x y coordinates
of the midpoints. The traveltime surfaces in Figure 4a are all
versions of Cheops pyramid (Claerbout, 1985), but each one is
computed in a different 3-D subspace of the 5-D space contain-
ing our prestack wavefield. Figure 4 illustrates that each subset
represents a spatially continuous domain in the 5-D prestack
wavefield.

FIG. 2. Various ways of generating 3-D subsets of the 5-D prestack wavefield: (a) 2-D line, (b) common-offset gather with constant
shot/receiver azimuth, (c) 3-D receiver gather, (d) 3-D shot gather, (e) cross-spread, (f) zig spread. X, Y are fixed, whereas lower
case coordinates vary in the subset; S is shot, R is receiver.

The common-offset gather with constant shot/receiver az-
imuth (COA gather) covers the whole survey area, whereas
the other subsets have a limited extent. The COA gather is
therefore better suited for prestack migration than any of the
other subsets. As we shall see, however, it is virtually impos-
sible to acquire COA gathers at a reasonable cost. A dis-
advantage of COA gathers is the single shooting direction.
Some subsurface structures can best be illuminated using a
wide range of azimuths (cf. O’Connell et al., 1993; Reilly,
1995).

All single-fold subsets mentioned in Table 1 lend themselves
to true-amplitude 3-D prestack migration. In fact, various au-
thors dealing with prestack migration implicitly or explicitly
assume a 3-D single-fold subset and derive formulas for the
migration of such data sets (Beylkin et al., 1985; Cohen et al.,
1986; Schleicher et al., 1993; Vermeer, 1995). The subsets are
also suitable for imaging with dip moveout (DMO) (Vermeer
et al., 1995; Pleshkevitch, 1996; Padhi and Holley, 1997). Padhi
and Holley (1997) named those single-fold subsets “minimal
data sets” (i.e., data sets minimally required for imaging). This
general suitability for imaging of the various basic subsets sug-
gests that their sampling must get due attention.

But before discussing sampling, it is helpful to first discuss
the subsets of orthogonal geometry and zigzag geometry in
some more detail.
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The cross-spread

Orthogonal geometry consists of more or less straight acqui-
sition lines which may be widely spaced. In the field, the data
are acquired in swaths, which may consist of a series of shots
(sometimes called a shot salvo) shooting center-spread into the
active receivers of an even number of receiver lines (see bottom
part of Figure 5). Other swath implementations are also in use.
Cross-spreads can be extracted from the orthogonal geometry
by collecting all traces that have a shot line and a receiver line
in common. Hence, there are as many cross-spreads as there
are intersections between shot lines and receiver lines.

Figure 5 highlights the shots and receivers corresponding to
one cross-spread in an orthogonal 3-D survey. The midpoint
area of the cross-spread is indicated for a wide as well as for a
narrow geometry. The maximum in-line offset of this geometry

FIG. 3. Basic subsets of line geometries: (a) orthogonal, (b) zigzag, and (c) parallel. Shaded areas indicate the midpoint areas of the
subsets. The basic subset of orthogonal geometry is the cross-spread. Zigzag geometry can be decomposed into subsets consisting
of zig- and zag-spreads. Parallel geometry has two possible basic subsets: the midpoint line (left) or the common-offset common-
azimuth gather (right). The latter may be acquired using repeated 2-D surveys.

a) b)

FIG. 4. Traveltime contours in 3-D subsets for the case of a diffraction (a) and a dipping plane (b). The contours are displayed as a
function of the (x, y)-coordinates of the midpoints. The position of the diffractor at (500,500,500) is indicated by the “+” symbol.

is given by the distance of the farthest active receiver from the
shot line, and the maximum cross-line offset is given by the
distance of the farthest shot from the receiver line. The ratio of
these two distances (cross-line/in-line) determines the aspect
ratio of the cross-spread, which is the same as the aspect ratio
of the swath.

Figure 6 illustrates some of the properties of the cross-
spread. The trace at midpoint M is a member of a common-shot
gather, a common-receiver gather, a common-offset gather,
and a common-azimuth gather. The midpoints of the common-
offset gather form a circle; therefore, horizontal layers show
up as circles in the timeslices of a cross-spread (Figure 7). The
midpoints of a common-azimuth gather lie along a straight line
through the origin of the cross-spread.

Each trace in the 3-D survey is an element of a unique cross-
spread. The neighbors of the trace in the cross-spread have
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FIG. 5. Cross-spread as subset of a wide orthogonal geometry and a narrow orthogonal geometry. Vertical lines are shotlines;
horizontal lines are receiver lines. The bottom part of the figure shows the generating swaths with a series of shots (the shot salvo)
in the middle. After these shots have been acquired, the swath moves up to acquire the next shot salvo. The maximum cross-line
offset depends on the number of receiver lines and determines whether a wide or a narrow geometry is acquired.

FIG. 6. Properties of cross-spread. The half-offset of a trace at M equals the distance to the center O of the
cross-spread (i.e., traces with same offset lie on a circle). The trace is both part of a common-shot gather (horizontal
through M) and part of a common-receiver gather (vertical through M). All traces close to M correspond to
neighboring shots on the shot line and to neighboring receivers on the receiver line.



        
1636 Vermeer

been shot by the same or by adjacent shots, and have been
recorded by the same or by adjacent receivers. In other words,
the spatial attributes of the traces around M vary slowly, mak-
ing the cross-spread a spatially continuous data set. On the
other hand, the maximum useful offset limits the extent of
each cross-spread (in a time-variant way), and the edges of
the cross-spreads form spatial discontinuities in orthogonal
geometry.

If staggered shotlines are used (as in brick-wall geometry),
the shot lines are only partially sampled, leading to cross-
spreads that are split into a number of strips. The number of
edges in this geometry is much larger than in the continuous
shot-line geometry; spatial continuity in this geometry is there-
fore degraded.

Subsets of zigzag geometry

In the field, zigzag geometry is acquired by zigzagging (at
45◦ angles with the receiver lines) with the sources between
two adjacent receiver lines. A swath may consist of four or
more receiver lines listening to each shot. The maximum cross-
line offset is equal to n/2+ 1 receiver line intervals, where n is
the number of active receiver lines. Figure 8 shows how the

FIG. 7. Timeslices through cross-spread. Taken from Walton (1972).

FIG. 8. Zigzag geometry. Vibrators zigzag between two adjacent receiver lines, while (in this case) four spreads of receivers record
each shot. A zig-spread can be gathered by taking data acquired with adjacent swaths. Four zig segments make up the shot line in
the zig-spread.

pattern of source trajectories can be arranged such that all zig
parts form continuous lines across the receiver lines, whereas
the zag parts form another set of straight shot lines. In this ar-
rangement, zig-spreads as well as zag-spreads can be gathered
from the recorded data. The maximum cross-line offset in the
zig- and zag-spreads is equal to the maximum cross-line offset
in the swath.

Normally, each shot is recorded center-spread, which means
that the active receivers move with each shot. As a conse-
quence, the number of traces in a common-receiver gather (in
a zig- or zag-spread) is not constant, but the number of traces in
a common–in-line–offset gather is. Current practice is to move
the shots in the in-line direction over a distance equal to the
receiver station interval. This leads to a shot interval that is the
square root of two times the receiver interval. In this geometry,
the acquired offsets are the same as in an orthogonal geometry
with the same spread length and the same number of receiver
lines, but the offset distribution is different.

Figure 9 illustrates some properties of the zig-spread. Any
trace in this spread is a member of a common-shot gather, a
common-receiver gather (parallel to the shot line), a common–
in-line-offset gather (parallel to the edges of the zig-spread),
a common-offset gather, and a common-azimuth gather. Note
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that the midpoints of the common-offset gather now form an
ellipse. If the maximum cross-line offset equals the maximum
in-line offset, the corresponding offset ellipse touches all four
edges of the diamond-shaped zig-spread.

A special case of the zigzag geometry is the double zigzag
(Onderwaater et al., 1996; Wams and Rozemond, 1997). In this
geometry, two zigzags (both with the same zigzag period) are
traversed instead of one. The second zigzag is separated from
the first zigzag by one quarter of the zigzag period to produce
an optimal offset distribution (in a four-line geometry with
line spacing four times station interval). The advantage of this
geometry is the much better stack response as compared to the
single zigzag geometry (cf. Figure 19).

2-D SYMMETRIC SAMPLING

Symmetric sampling was first introduced for 2-D lines in my
book Seismic wavefield sampling (Vermeer, 1990). Although it
is a bit dicey to try and summarize a whole book within half a
page, I’ll try to list here the most relevant points of 2-D sym-
metric sampling. Full details can be found in Vermeer (1990).

1) Because of reciprocity, the properties of the continuous
wavefield in the common-shot gather are the same as
the properties in the common-receiver gather. Therefore,
sampling requirements are the same in both domains,
leading to symmetric sampling.

2) a. The basic sampling interval 1x is defined as the sam-
pling interval required for alias-free spatial sampling of
the whole continuous wavefield (including ground roll,
or other low-velocity noise):

1x = 1
2kmax

= Vmin

2 fmax
, (2)

where kmax is the maximum wavenumber, Vmin is mini-
mum apparent velocity, and fmax is maximum frequency,
all measured in the common-shot gather (or in the
common-receiver gather).
b. The basic signal sampling interval d is defined as the
sampling interval required for alias-free spatial sampling
of the desired part of the continuous wavefield (nor-
mally P-wave energy, excluding ground roll or other low-

FIG. 9. Zig-spread with equal maximum in-line and maximum
cross-line offsets. Note that the receiver spread moves with
the shot, ensuring center-spread acquisition for all shots. The
rhomboid gray area is the midpoint area of the zig-spread.
Horizontal lines represent common shots; oblique lines parallel
to the edges of the zig-spread represent common-inline offsets.
The ellipse inscribed within the rhomboid represents midpoints
with offset equal to the maximum in-line offset.

velocity noise). The interval d is governed by the same
formula as 1x, but now Vmin is the minimum recorded
apparent velocity in the desired part of the wavefield.

3) The basic sampling interval may be much smaller than
anybody is willing to pay for. For example, for a ground-
roll velocity of 300 m/s and maximum frequency (in the
ground roll) of 60 Hz, a spatial sampling interval of 2.5 m
would be required. An alternative is to sample the wave-
field with the basic signal sampling interval, and to use
shot and receiver arrays as anti-alias filters and resam-
pling operators. Receiver arrays serve as anti-alias filters
in the common-shot domain, and shot arrays serve as anti-
alias filters in the common-receiver domain. To preserve
symmetry, shot and receiver arrays should have equal
length and have an equal number of elements.

4) Choosing the number of elements N in a linear array as
N = d/1x, adjacent (nonoverlapping) arrays are formed
which still sample the wavefield at the basic sampling
interval 1x and resample it to the basic signal sampling
interval d. The array response of this array is

a(k) = sin(Nπk1x)
N sin(πk1x)

= sin(πkd)
N sin(πk1x)

, (3)

where k is the wavenumber (inverse of wavelength) in
the corresponding shot or receiver domain. The pass-
band of this filter is −1/d< k< 1/d. At |k| = 1/d, the re-
sponse is zero, and the suppression band is at |k|> 1/d.
For a sampling interval d, the Nyquist wavenumber is
at k=±1/(2d). To achieve a suppression band for |k| >
1/(2d), a running mix of two arrays can be applied in the
processing center.

5) Because the array response has strong side lobes in the
suppression band, the anti-aliasing effect of a linear array
is far from optimal.

6) Low-velocity noise coming in from the sides (e.g., side
scatterers) will have large apparent velocity along the
(linear) array. This noise will fall in the passband of the
array, but can be suppressed if an areal array is used.

In the next section, 3-D symmetric sampling is introduced.
It turns out that 2-D symmetric sampling is just a special case
of 3-D symmetric sampling.

3-D SYMMETRIC SAMPLING

One approach to 3-D survey design (e.g., mega-bin survey
technique, Goodway and Ragan, 1997) attempts to sample all
four spatial coordinates of the 5-D prestack wavefield as well
as possible. Because of the high cost of dense sampling, this
objective leads to coarse sampling of the four spatial coordi-
nates with ensuing difficulties in the application of spatial filters
and prestack migration. Alias-free sampling of the whole 5-D
prestack wavefield is clearly too expensive. Often, it is also im-
practical, as it requires free access to the whole survey area.
Instead, in the 3-D symmetric sampling approach, we attempt
to properly sample the single-fold subsets of the chosen areal
or line geometry. If we succeed in that more modest objective,
the continuous wavefield of the subset underlying the samples
can be reconstructed fully. This more modest aim is achieved
by dense enough sampling of the varying coordinates in each
subset (cf. Figure 2 and Table 1). Usually, sampling of a subset
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will provide a single-fold (except in the case of sampling the
2-D line) data set of limited extent. As illustrated in Figure 5
for an orthogonal geometry, partially overlapping subsets need
to be sampled to cover the whole survey area.

Of all basic subsets listed in Table 1, only the common-
offset gather may extend across the whole survey area. All
other single-fold basic subsets have limited areal extent in prac-
tice, because offset increases toward the edges in those subsets
(cf. Figure 6 for cross-spread) and the target depth has a maxi-
mum useful shot/receiver offset. Often the extent of those sub-
sets is maximized in only one spatial direction. A large extent
in both spatial directions would fully exploit the potential of
each geometry. Therefore, besides alias-free sampling of the
basic subsets, we should maximize the (useful) areal extent of
the subsets with limited extent. This prescription maximizes
the spatial continuity in the 3-D survey and, for a given fold,
minimizes the number of edges in the survey.

Together, alias-free sampling of the basic subsets and maxi-
mizing the extent of each subset form a generic prescription of
3-D symmetric sampling.

The requirements of 2-D symmetric sampling—equal shot
and receiver sampling intervals, and equal shot and receiver
arrays—apply without change to the sampling of the subsets
of the various 3-D line geometries. However, apart from the
2-D symmetric sampling criteria, each 3-D line geometry needs
some additional criteria to fully satisfy 3-D symmetric sampling
requirements. Areal geometry has its own requirements to sat-
isfy the prescription of 3-D symmetric sampling. This extension
to 3-D is discussed in the following sections.

Areal geometries

In areal geometry, the basic subsets are either 3-D common-
shot gathers acquired with widely spaced shots or 3-D common-
receiver gathers recorded with widely spaced receivers. Alias-
free sampling of 3-D common-shot gathers requires that
receivers be sampled at the basic sampling interval in x as well
as in y.

On land, the basic sampling interval is usually so small that
sampling at that interval becomes prohibitively expensive. An
alternative to this very fine sampling is to use coarser receiver-
station intervals, where alias protection is provided by areal
geophone arrays. But this would mean that the whole survey
area still has to be covered with geophones. A practical alter-
native to plastering the area with areal geophone arrays might
be the use of an areal shot array (with the same dimensions
as would be required for the areal geophone arrays). Even
though the effect of a shot array is not identical to that of
areal geophone arrays, it might come close. Another alterna-
tive is to use deep shot holes so that hardly any ground roll
is generated, leading to a larger basic sampling interval. But
even then, the areal geometry is very labor-intensive, making
it much more expensive than an equally satisfactory orthogonal
geometry.

For deep-water acquisition, the basic sampling interval is
equal to the basic signal sampling interval. In that environment,
areal arrays are not needed to suppress unwanted coherent
energy. Moreover, covering the survey area with closely spaced
shots need not be prohibitively expensive, so that the recording
of 3-D common-receiver gathers using a square grid of widely
spaced stationary receivers might be affordable.

Line geometries

Alias-free sampling of the 3-D subsets of line geometries re-
quires sampling of shots and receivers along their respective
acquisition lines using the basic sampling interval. Again, ar-
rays can be used as anti-alias filters and resampling operators to
allow sampling at the basic signal sampling interval. Linear ar-
rays along the acquisition lines are sufficient to take care of the
problem of aliasing noise with low apparent velocities. How-
ever, if needed, noise suppression can be improved by using
areal shot and/or receiver arrays.

Parallel geometry.—In parallel geometry, it is not sufficient
for the midpoint line to be sampled without aliasing, the dis-
tance between the midpoint lines also has to be considered.
If that distance is small enough, the COA gathers can also be
sampled alias-free in both spatial dimensions. Repeated acqui-
sition, at small intervals, of 2-D lines produces the ideal parallel
geometry (for each midpoint line, its shot-line and its receiver
line coincide with it; cf. Figure 3). In case of center-spread ac-
quisition, the COA gather is properly sampled straightaway.
In marine acquisition with end-on shooting and equal shot and
receiver intervals, the odd/even signal pattern (checkerboard-
ing) in the midpoints can be remedied by de-aliasing of the
common-offset gathers (by interpolation in the common-shot
and the common-receiver gathers; Vermeer, 1990).

Another—quite hypothetical—way of acquiring properly
sampled COA gathers is to have a constant (nonzero) cross-line
offset between the source track and the receiver line. Mov-
ing this arrangement for the next midpoint line over a small
distance (half the basic sampling interval) also leads to well-
sampled COA gathers. In this setup, each COA gather would
have its own shot/receiver azimuth.

In marine streamer acquisition, parallel geometry is more or
less the rule. Unfortunately, with this, 3-D symmetric sampling
is far from the rule. The first marine 3-D surveys were often
shot as a series of 2-D lines, which often satisfied the 2-D sym-
metric sampling criteria, but which used too large line spacings,
consequently requiring later reshoots. Modern streamer acqui-
sition uses multisource multistreamer configurations. Though
common–in-line-offset gathers can be extracted from such sur-
veys, the cross-line offset varies between midpoint lines. These
geometries lead to irregular subsurface illumination, even if the
surface sampling is regular (Beasley and Mobley, 1995; Beasley,
1996).

The potential irregularity of subsurface sampling is illus-
trated in Figure 10, which shows the “footprints” of various
multisource multistreamer configurations for a plane dipping
layer in a constant-velocity medium. Each footprint consists
of the x,y-coordinates of the reflection points for 24 adjacent
midpoints in a cross-line of the geometry. Each vertical or near-
vertical line in Figure 10 connects the coordinates of the re-
flection points corresponding to one midpoint. The reflection
points corresponding to the same long offset are connected by
a horizontal or near-horizontal line. The shape of the reflection
point trajectories can be understood if one realizes that the re-
flection point moves updip, that is, toward the source when
shooting downdip (sailing updip) and away from the source
when shooting updip. Note that the cross-line shift of the re-
flection points is largest for the long offsets, even though the
azimuth variation is smallest for the long offsets.
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In these multisource multistreamer geometries, the shortest
offsets sample the subsurface in a regular way, but the longer
offsets sample the subsurface irregularly, the irregularity in-
creasing with the range of cross-line offsets. The irregularity
also depends on the in-line dip: the larger this dip, the more
irregularly will the reflector be illuminated. Only the single-
source single-streamer geometry samples the subsurface in a
regular way.

Another reason why properly sampled subsets are not
obtained in streamer acquisition is differential feathering

FIG. 10. Nominal footprints of multisource multistreamer configurations in the case of downdip shooting (left column) and updip
shooting (right column). Each vertical or near-vertical line connects the (x, y)-coordinates of the reflection points as seen by one of
24 adjacent midpoints in the crossline direction. In every case, a reflector with 30◦ dip is illuminated in a constant-velocity medium.
The horizontal or near-horizontal line connects the longest offsets. Note the irregular sampling of the long offsets in the cross-line
direction in all cases except for the single-source single-streamer configuration.

between successive midpoint lines or boat passes. This causes
even more variation of azimuth in the 3-D common-offset gath-
ers. Figure 11 shows footprints of the same geometries as Fig-
ure 10, but now including random feathering between boat
passes and assuming constant feather within a boat pass. In
this case, even the single/single geometry fails to illuminate the
subsurface in a regular way.

It may be noted that feathering turns the midpoint line into
a midpoint area that has basically single-fold coverage. Ow-
ing to differential feathering, however, these midpoint areas
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(single-fold subsets of the “feather” geometry) do not over-
lap in a regular way. Normally, the feathering is not large
enough to permit prestack migration of individual midpoint
areas (i.e., these midpoint areas do not qualify as minimal data
sets; Padhi and Holley, 1997). Only if the feathering could be
made constant across the whole survey would the single-source
single-streamer geometry again be ideally suited for prestack
migration. In that case, each 3-D common-offset gather would
have constant azimuth.

In the in-line direction, the variation in illumination caused
by both multisource multistreamer acquisition and differential
feathering is far less than in the cross-line direction, leading

FIG. 11. Footprints of multisource multistreamer configurations with feathering. For each boat pass, a constant feathering angle was
randomly selected from a uniform distribution between −2.5◦ and 2.5◦. Otherwise, the acquisition geometries and subsurface are
the same as in Figure 10. Note the dramatic departure from regularity for the single-source single-streamer geometry.

to striping of the amplitudes seen in horizon slices. Various
techniques have been proposed to correct for these irregulari-
ties (e.g., Beasley and Klotz, 1992; Gardner and Canning, 1994,
Huard and Spitz, 1997), but a fully satisfactory solution seems
to be impossible. Hence, in cases, where the geophysical inter-
pretation may be influenced strongly by the geometry imprint,
alternative techniques to streamer acquisition using stationary-
receiver systems seem to be a better way out.

Orthogonal geometry.—Besides equal shot and receiver in-
tervals and equal shot and receiver arrays, 3-D symmetric sam-
pling of orthogonal geometry also requires as many receivers
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in the common shot as shots in the common receiver, and
the center-spread acquisition of both shots and receivers. This
recipe ensures the acquisition of square cross-spreads (the as-
pect ratio of the geometry equals one, as in the left side of
Figure 5). The shot line interval and the receiver line interval
should preferably also be the same for symmetric sampling.
However, allowing some difference in shot and receiver line
density in the case where shots and receivers differ in cost,
would be quite acceptable in most cases.

Figure 12a shows that a linear geophone array mixes mid-
points in a common-shot gather, thereby reducing the alias-
ing in that gather. Figure 12b shows what happens when a
linear shot array (along the shot line) is introduced as well:
it reduces aliasing in the common-receiver gather. Together,
the linear shot and receiver arrays ensure sampling of the
whole cross-spread with minimal aliasing. It should be real-
ized that shot arrays are as important as geophone arrays;
as geophone arrays will not prevent aliasing in the common-
receiver gather, they are fully complementary (see also Smith,
1997).

In addition to serving as anti-alias filters and resampling op-
erators, arrays also serve to suppress noise, such as ground roll.
The first arrival of the ground roll has the shape of a cone
centered on the center of the cross-spread. A common-shot
cross-section through this cone has the shape of a hyperbola.
The ground roll near the apex of the hyperbola will not be sup-
pressed by the receiver arrays. This flat part of the hyperbola is
centered around the shot line. The common-receiver gathers,
however, cut the same part of the ground-roll cone at much
larger angles. Hence, in that area, the shot arrays will suppress
the ground roll. The same reasoning can be applied with shots
and receivers interchanged. In other words, in the cross-spread,
shot and receiver arrays are fully complementary with respect
to ground-roll suppression. In those places where the shot array
is less effective in suppressing ground-roll energy, the receiver
array is at its best, and vice versa. If the noise is very strong,
noise suppression may be improved by using areal rather than
linear arrays.

In areas where shots are particularly expensive, areal re-
ceiver arrays may be considered in combination with single
shots. At least for first-arrival ground roll in a homogeneous

FIG. 12. Anti-aliasing by geophone array, alone (a) and in combination with shot array (b). A geophone array
reduces aliasing in a common-shot gather, whereas a shot array reduces aliasing in a common-receiver gather. To-
gether, they take care of reduced aliasing in the cross-spread. To avoid clutter, only three of the nine contributing
shot/receiver segments have been drawn in (b).

medium, the action of an N-element shot array convolved
with an M-element receiver array is identical to the action
of an N×M-element receiver array convolved with a single
shot (apart from shot strength effects). For noise traveling
in other directions—back-scattered noise and side-scattered
noise—the response would be different. Theoretically, an areal
receiver array would not protect as much against aliasing in
the common-receiver gather as would the combination of a
linear shot array and a linear receiver array. As far as noise
suppression is concerned, however, the areal array has a small
advantage: it will always suppress energy with slow apparent
velocity, irrespective of the traveling direction of the energy.
Therefore, if an areal geophone array is cheaper than the com-
bination of linear shot and receiver arrays, such a departure
from symmetric sampling might be the best option.

The case for center-spread acquisition and equal maxi-
mum cross-line offset and maximum in-line offset is supported
strongly by the timeslices of a square cross-spread shown in
Figure 13. In the top timeslices in Figure 13, the traveltime con-
tours are circular, corresponding to reflections from horizontal
layering, whereas in the bottom timeslices in Figure 13, the trav-
eltime contours are elliptical, corresponding to plane-dipping
reflectors. Note the similarity of these latter contours to those
for the cross-spread in Figure 4b. If the maximum cross-line off-
set were much smaller than the maximum in-line offset, the spa-
tial continuity of the cross-spread would not be fully exploited.
Figure 13 also illustrates the need for equal shot and receiver
intervals; the wavefield clearly behaves in the same way in both
spatial directions. Doubling the shot interval would cause alias-
ing in the common-receiver gathers and, hence, largely hamper
the usefulness of k or f -k filters in that domain.

Even though cross-spreads have limited extent, it is possi-
ble to create single-fold coverage across the whole survey by
a tiling of adjacent cross-spreads. In such a single-fold gather,
the data would be piecewise continuous with discontinuities
between the adjacent cross-spreads. Figure 14 shows the illu-
mination by four adjacent cross-spreads of a reflector with 15◦

dip and a reflector with 45◦ dip. Each cross-spread covers the re-
flector with its own “blanket.” Around the edges of these blan-
kets gaps and overlaps exist. Within each blanket, illumination
can be considered as continuous (provided the cross-spread
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is sampled alias free), but illumination is discontinuous across
the edge of each blanket (see also the Appendix).

Zigzag geometry.—Alias-free sampling of the zig- and zag-
spreads would require that the spacing of the traces in the
common-receiver gather be the same as the trace spacing in
the common-shot gather. Similarly to other geometries, this

FIG. 13. Timeslices through a square cross-spread.

FIG. 14. Illumination of 15◦ (a) and 45◦ (b) dipping events by four adjacent cross-spreads. Note that illumination fold can be
considered a continuous function inside the cross-spreads, whereas it is discontinuous across the edges of the cross-spreads.

requirement would mean equal shot and receiver intervals, the
shot interval being measured along the shot line.

As mentioned before, in actual practice the shot interval
is the receiver interval times the square root of two. This
means that alias-free sampling of the common-receiver gath-
ers would require oversampling of the common-shot gathers.
The zig- and zag-spreads (cf. Figure 9) have a constant number
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of traces N in the common–in-line-offset gather, whereas the
number of traces in the common-receiver gathers varies from
one to N.

The maximum useful extent of the zig-spread is reached if
the offset ellipse of the maximum useful offset touches the
edges of the zig-spread as shown in Figure 9. In that case, the
maximum cross-line offset equals the maximum in-line offset.

Zigzag geometry is particularly efficient in a desert environ-
ment surveyed with vibrators. The distance to be traveled by
the vibrators is a factor square root of two shorter than in an
equivalent orthogonal geometry, and it is much easier to avoid
driving over geophones, because no sharp turns have to be
made. On the other hand, it is more difficult to benefit from
the spatial continuity of the subsets in prestack processing.

3-D SURVEY DESIGN ON THE BASIS
OF ORTHOGONAL GEOMETRY

Orthogonal geometry is the geometry of choice for much
of the land data acquisition, but it is also used in marine data
acquisition in combination with ocean bottom cables. If 3-D
symmetric sampling is taken as a starting point, the choice of
parameters for this geometry is simplified considerably. Instead
of having to decide on the shot interval and on the receiver in-
terval, a decision need only be made as to the sampling interval.
Similarly, the maximum in-line and maximum cross-line offsets
can be made equal. It is also recommended to see what the con-
sequences are of making the shot line interval and the receiver
line interval the same. Another benefit of symmetric sampling
is that the designer does not need to worry about the offset
distribution: 3-D symmetric sampling automatically leads to a
reasonable offset distribution.

The choice of the various parameters depends on the geo-
physical requirements, which in turn are often a compromise
between what the interpreter would like to see and what the
budget will permit. In my view, the most important geophysi-
cal requirements are: spatial continuity, resolution, shallowest
horizon to be mapped, deepest horizon to be mapped, and the
signal-to-noise ratio.

Spatial continuity is best served by 3-D symmetric sampling
in which the single-fold cross-spreads have maximal (useful)
extent, thus minimizing the number of edges and edge effects.

Resolution is determined by the maximum frequency, the
velocity model, and the measurement configuration (Beylkin
et al., 1985, Vermeer, 1997). As sampling can be regarded as a
means of representing the integrands in the migration formulas,
the quality of migration and hence the achievable resolution
depends also on the sampling interval. Proper sampling of the
integrands is tantamount to requiring alias-free sampling of
the desired wavefield. This leads to a station spacing following
from the equation

1s= 1r = Vmin/2 fmax , (4)

in which 1s and 1r are the station spacings, Vmin is minimum
apparent velocity of the recorded wavefield, and fmax is max-
imum frequency. In other words, 1s and 1r should be equal
to the basic signal sampling interval needed for alias-free sam-
pling of the desired wavefield by the cross-spread.

The deepest horizon to be mapped determines the maximum
useful offset Xmax to be gleaned from a mute function repre-

sentative of the survey area. Often, however, the mute function
of existing data ends at some shallow level because of too lim-
ited an offset range.

An important attribute in 3-D survey design is the largest
minimum offset (LMOS). In combination with the mute
function, LMOS determines the shallowest level with com-
plete single-fold coverage. In the orthogonal geometry with
equal shot and receiver line interval S, LMOS= S

√
2 (see

Figure 15). In the corresponding brick-wall geometry with
the same number of shots, LMOS is considerably smaller
(LMOS= S

√
1.25). For many designers, this is one of the rea-

sons to prefer brick over continuous orthogonal geometries
(another reason is the stack response, which is discussed in
“The stack response”).

[The actual values of LMOS are usually somewhat smaller
than given here because the pattern of shot positions is nor-
mally offset from the receiver line by half a shot station inter-
val. The same holds for the pattern of receiver positions, which
is offset from the shot line by half a station interval.]

The shallowest horizon to be mapped determines the fold
at shallow levels. If four-fold coverage would be sufficient for
mapping a shallow horizon and the largest useful offset at this
level would be Xsh, then the largest minimum offset LMOS
would be Xsh/2. The optimum line spacing S follows from S=
L M OS/

√
2.

The line spacing is a crucial parameter: it has a great influ-
ence on the cost of the survey. Therefore, asking what is the
shallowest horizon that must be mapped is perhaps a more rel-
evant question than asking what is the shallowest level where
at least single-fold coverage should exist, which is the level
where the maximum useful offset is LMOS. Often, however, it
will be difficult or downright impossible to indicate the level of
the shallowest horizon to be mapped, particularly if there is no
such thing as a “shallowest” horizon (e.g., when steep horizons
extend all the way to the surface).

If shots are much more expensive than receivers, it should
be acceptable to increase the shot line spacing while keeping
LMOS the same by decreasing the receiver line spacing. There
is a limit, of course; the shot line spacing should not be larger
than the LMOS required for mapping the shallowest horizon.

Line spacing and maximum offset lead to a fold-of-coverage
(multiplicity) M according to M = (Xmax/S)2 (or the equiv-
alent if in-line and cross-line parameters are not the same;
replace Xmax by spread length divided by two for asymmet-
ric shot or receiver spreads). This coverage will often be more

FIG. 15. Largest minimum offset LMOS: (a) continuous shot
line geometry, (b) brick wall geometry. The minimum offset
for midpoint M equals the length of the diagonal lines. The
minimum offsets for other midpoints will be smaller.
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than enough to achieve adequate S/N, since the maximum fold-
of-coverage is already determined as soon as the required fold
at shallow levels has been decided. If M is not large enough for
adequate S/N, the line spacing can be decreased or areal arrays
could be considered.

Noise suppression also depends on the offset distribution,
which determines the stack response. For low-fold data, de-
signers of a 3-D survey do not have to worry about the offset
distribution if they adhere to 3-D symmetric sampling. The
corresponding wide geometry leads automatically to an irreg-
ular offset distribution, providing the best stack response for
low-fold data (see also “The stack response”).

A choice for 3-D symmetric sampling has significant conse-
quences for the distribution of offsets over the offset range.
This is illustrated in Figure 16, which compares the offset dis-
tributions for a narrow and a wide (symmetric) geometry. For
the same full-fold coverage, the narrow geometry builds up
fold faster than the wide geometry (Figure 16a). Up to the
maximum cross-line offset, the offset density builds up linearly
as a function of offset. Hence long offsets dominate in wide
geometry (Figure 16b).

The faster buildup of fold in the narrow geometry is a clear
advantage of this geometry. But a wide geometry makes more
efficient use of the shots than does a narrow geometry, so that—
for the same cost—a higher maximum fold can be obtained.
Additionally, the preponderance of long offsets in wide geom-
etry gives greater weight to the long offsets than to the short
offsets, leading to better suppression of multiples with a small
differential moveout (cf., “Weighted stacking for multiple sup-
pression” in Vermeer, 1990).

IMPLEMENTATION IN THE FIELD

The objective of spatial continuity and the concept of con-
tinuous fold profoundly influence the way a 3-D survey design
is implemented in the field. Current practice is to aim for a
regular fold as counted in bins. This regularity is achieved most
easily by locating shots and receivers as close as possible to
the nominal grid point position. If a shot cannot be located at
that point, the standard prescription is to move the shot sta-
tion over an integer number of station intervals to the right
or to the left, and to move the receiver spread over an equal
number of stations in the opposite direction. This prescription
maintains fold and it maintains midpoints in bin centers, but it

FIG. 16. Fold and trace density as functions of offset in 16-fold narrow and wide geometries. The maximum cross-line offset is 500
m for the narrow geometry (“n”) and 2400 m for the wide geometry (“w”). In both cases the maximum inline offset is 2400 m. The
offset distribution is considered to be a continuous function in a rectangle with the same aspect ratio as that of the geometry. For
the same full-fold coverage, a narrow geometry has a faster buildup of fold than does a wide geometry. For comparison, the offset
density of a parallel geometry with same full-fold coverage is shown as well in (b).

produces spatial discontinuities in the common-receiver gath-
ers or common-shot gathers.

For optimal spatial continuity, there should be no abrupt
changes in the shot and receiver positions. Each shot and
receiver gather should contain a smooth subset of the 5-D
prestack wavefield. Rather than jagged acquisition lines, sin-
uous acquisition lines should be laid out in much the same
way as proposed in Lindsey (1991) for the crooked 2-D line.
Moreover, sinuous lines have less impact on the environment,
because they can wind around large trees (Williams, 1993).
Solitary shots or receivers should always be avoided, of course.

In case an obstacle cannot be avoided by skirting around
it, one may consider increasing the sampling density (along
the acquisition lines) toward the obstacle, thus improving the
chances for a successful interpolation across the obstacle.

SUBSET-ORIENTED PROCESSING

The stack response of low-fold data will never be very good,
making it all the more important that prestack processing be
carried out successfully. A major advantage of acquiring well-
sampled subsets of the acquisition geometry is the possibility
of applying various prestack processes on a subset-by-subset
basis.

In areas where first breaks are difficult to pick, areal picking
on subset-sorted data will improve the chances of making con-
sistent picks. Dual-domain f -k filtering in cross-spreads can be
even more successful than in 2-D data where both filters op-
erate along the same midpoint line. As with shot and receiver
arrays, shot-domain f -k filters and receiver-domain f -k filters
are fully complementary. Cross-spreads and 3-D receiver gath-
ers are also suited for application of a true 3-D filter.

The basic subsets are also the best domain in which to carry
out interpolation, where necessary, because only two of the
four spatial coordinates change at the same time (cf. Cooper
et al., 1997). If there are missing shots or receivers, the neigh-
boring shots and receivers can be used for interpolation, pro-
vided the sampling of the subsets is not too coarse. The lack of
well-sampled subsets in marine streamer acquisition makes it
difficult to interpolate successfully in the cross-line direction.

It is common practice to carry out picking for residual statics
computation in bins or superbins. However, more reliable pick-
ing can be carried out in the basic subsets, because each trace in
a subset has similar neighbors with which the cross-correlation
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coefficient may be large. The idea of picking a grid of traces as
proposed in Marcoux (1981) could be revived and adapted for
this purpose.

Some geophysicists have entertained the idea that it would
be best to acquire narrow swaths (cf. Figure 5) in the orthogonal
geometry to make sure that the prestack data do not deviate too
much from the ideal of common-offset gathers. In particular,
dip moveout (DMO) would suffer from wide swaths. However,
it has been shown in Vermeer et al. (1995) and in Padhi and
Holley (1997) that any 3-D single-fold data set in which all
traces are surrounded by near neighbors is suitable for DMO.
In fact, each minimal data set is suitable not only for DMO
but also for imaging the illuminated part of the subsurface by
means of prestack migration. Schleicher et al. (1993) devel-
oped the conditions for true-amplitude prestack migration of
minimal data sets.

THE STACK RESPONSE

For 2-D seismic data, stacking can suppress coherent noise
much better than random noise if the offsets are regularly and
densely sampled (Vermeer, 1990). The stack response of a CMP
stack with an offset interval of dx has best suppression around
wavenumber k = 1/(2dx) and has aliases for k = n/dx, n being
an integer number. In well-sampled 2-D data, the first alias of
the stack response (n = 1) coincides with the first notch of the
field arrays (though only for horizontal events). This observa-
tion regarding 2-D data has led to the widespread belief that
3-D survey design should aim for regular offset distributions.

Yet, even for 2-D data, a regular offset distribution is not
ideal in general. If the fold-of-coverage is halved by doubling
the shot interval, the offset sampling in the CMPs doubles,
leading to a first alias of the stack response at half the orig-
inal wavenumber. This is illustrated in Figure 17. Figure 17a
shows the stack response of a 48-fold stack, Figure 17b the
stack response of a 24-fold stack. The first alias in Figure 17b
may pass a considerable amount of coherent noise, which was
not suppressed by the field arrays either. For low-fold data, it
is better to randomize the offset distribution, as shown in Fig-
ure 17c, since a periodicity in the offset distribution in a CMP
allows the corresponding wavenumbers to escape suppression.
A random offset distribution, however, suppresses coherent
noise about as well as it suppresses random noise. Hence, for
low-fold data, it is best to have an irregular offset distribution,
that is, the CMP should show no periodicities in offset, yet
cover the whole range of offsets.

In 3-D surveys, the fold-of-coverage is usually much smaller
than in 2-D. If so, a regular offset distribution would produce
peaks in the stack response, through which coherent noise
events could pass. Selecting a wide orthogonal geometry leads
automatically to an irregular offset distribution, making the
stack responses of the various bins as flat as possible on av-
erage. Narrow geometries tend to produce periodicities in the
offset distribution, leading to peaks in the stack response. This
is illustrated in Figure 18, which shows the average stack re-
sponses of two narrow geometries and a wide geometry. Note
that the stack response of the brick-wall geometry shows the
same peaks as the narrow continuous geometry, except for the
first peak.

Double-zigzag geometry represents a special case. For a
small aspect ratio, each CMP in this high-fold geometry has a

nearly regular offset distribution, leading to a very good stack
response (the first strong peak in the stack response occurs at
a high wavenumber due to the high fold). Figure 19 shows the
stack responses of a single zigzag and a double-zigzag geometry.
The single zigzag has a peak at k = 1/400 m−1, corresponding
to the period of the zigzag. In the double zigzag, this periodic-
ity is removed by the interaction of the two zigzags. It should
be realized that in a wide double-zigzag geometry the offsets
are distributed less regularly, leading to a random-noise type
suppression.

FIG. 17. Stack responses of 2-D geometries: (a) regular 48-fold,
(b) regular 24-fold, and (c) irregular 24-fold. The first alias in
the case of the regular 48-fold stack occurs at k = 0.02, where
no significant coherent noise may be present. However, the first
alias of the response of the 24-fold stack, which has double the
trace interval of (a), may pass a significant amount of noise.
The irregular 24-fold stack, which covers the same offset range
as (b) suppresses coherent energy everywhere about as much
as it suppresses random noise.
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FIG. 18. Average stack responses of three 16-fold 3-D geome-
tries. The most pronounced peaks occur in the narrow contin-
uous geometry. The response for the brick geometry is similar
to that for the narrow geometry, although it does not show a
large peak close to k = 0.002. The wide geometry suppresses all
coherent energy about as much as it suppresses random noise.

FIG. 19. Average stack responses of zigzag geometries. Shown
are the stack responses for a 44-fold single zigzag geometry
and an 88-fold double-zigzag geometry. In both cases, four re-
ceiver lines are spaced at 200 m, and the inline shot interval
and receiver station interval are 50 m.

In a wide geometry, prestack processing can take care of
the ground roll energy that is not going to be suppressed by
the stack. Also migration suppresses much of the energy that
does not fit the migration model (Smith and McKinley, 1996).
Therefore, the not-so-good stack response of wide geometries
can be compensated to some extent in processing. Only for a se-
vere multiple problem—and in the absence of a good prestack
multiple-elimination program—it may be necessary to use a
narrow double-zigzag geometry for suppression of the multi-
ples by stacking.

CONCLUSIONS

For all intents and purposes, it is impossible to properly sam-
ple the whole 5-D prestack wavefield. Three-dimensional sym-
metric sampling prescribes the next best alternative: the proper
sampling of single-fold basic subsets of 3-D geometries. Such
sampling allows optimal prestack processing, and it takes care
of a design criterion that is often overlooked: spatial continuity.

If the design of 3-D surveys is based on 3-D symmetric sam-
pling, the choice of parameters for the survey is simplified and

can be approached in a systematic and scientifically sound way.
Nevertheless, even with 3-D symmetric sampling as a starting
point, 3-D design requires careful thought to find the best com-
promise between quality and cost.

The objective of spatial continuity profoundly influences the
way in which practical survey problems need to be addressed.
Traditionally, seismic data acquisition has concentrated on ob-
taining the prescribed fold. With 3-D symmetric sampling,
physics, rather than statistics, is used.
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APPENDIX

A DISCUSSION OF “FOLD”

Fold, fold-of-coverage, and multiplicity are all expressions
for the same notion. Usually, fold is thought of as the number
of traces sharing the same midpoint (in 2-D acquisition) or the
number of traces sharing the same bin (in 3-D acquisition).
However, it is appropriate and instructive to describe fold—at
any surface position—also as the number of overlapping mid-
point areas of the 3-D subsets of the 5-D prestack wavefield. In
other words, fold can also be considered as a continuous func-
tion of the midpoint coordinates of overlapping subsets. In the
concept of continuous fold, fold is discontinuous at the edges of
any subset, unless the subset is adjacent to another subset. This
concept of continuous fold might be exploited to derive a mea-
sure of the spatial continuity of a geometry. Note, however,
that this description of fold cannot be applied in geometries
that are inherently spatially discontinuous, such as the multi-
source multistreamer configurations (see “Parallel geometry”
within the subsection “Line geometries,” and also Beasley and
Mobley, 1995).

The concept of continuous fold is not new. It was already
used to describe fold for 2-D data, where it is known that each
receiver spread length produces single-fold coverage along a
distance equal to half the spread length. If fold is counted cor-
rectly, there should be no difference between the continuous
fold count and the discrete fold count. Disparities may arise if
the binsize of a geometry is enlarged. In my view, it is incorrect

to call the ensuing increase of number of traces in each bin an
increase in fold.

The concept of continuous fold-of-coverage can be extended
to continuous fold-of-illumination, image fold, and DMO fold.
Each (continuous) midpoint area corresponds to a continu-
ous area on any reflector that has been illuminated (the area
of specular points corresponding to the midpoint area). Fold-
of-illumination at any point is just the number of overlap-
ping illuminated areas (see also the discussion of Figure 14).
Each area that has been illuminated can be imaged, apart
from incomplete images along the edges of illuminated ar-
eas. Therefore, the image fold is at best equal to the illumi-
nation fold. From each point of a single-fold area of illumi-
nation, a normal-incidence ray may be traced to the surface,
giving rise to a surface area for which DMO images can be
constructed. The DMO fold at any point corresponds to the
number of such overlapping surface areas at that point. Be-
cause of edge effects, the DMO fold is at best equal to illumi-
nation fold. For another definition of DMO fold, see Ferber
(1997).

A consequence of the concept of image fold is that in CIP
(common image point) analysis the number of image traces
should not be larger than the expected image fold. If it is, some
of the image traces will show incomplete images, which may
give rise to false analysis results.


