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Short Note

Fresnel zones for broadband data

Matthias Bruhl*, Gijs J. 0. Vermeer*, and Michael Kiehn*

INTRODUCTION

For monochromatic waves, the term "Fresnel zone" is
well-defined even though different authors use different termi-
nology. Most authors use the definition originating from optics.
There, the first Fresnel zone is defined as the area of a circular
hole in a screen between a light source and an observation
point that produces maximum light intensity in the observation
point (Figure 1). If the radius of the hole is enlarged, minima
and maxima in light intensity alternate. The first maximum is
reached if the raypath difference between the direct ray and
the ray traveling via the edge of the hole equals half a
wavelength. The extension of the definition to energy reflected
from a circular disk is straightforward (if we restrict ourselves
to ray theory and neglect the angle dependency of the reflec-
tion coefficient) and is illustrated in Figure 2 (see also Sheriff,
1991).

The first Fresnel zone is often used as an indicator of the
region that contributes energy (constructively) to the total
reflection energy, whereas energy returning from areas outside
this region interferes destructively. Berkhout (1984) defines
the Fresnel zone differently. Rather than using the area that
leads to maximum energy, he defines the first Fresnel zone as
the area that returns exactly the desired reflection intensity
(but the incorrect wavelet as we will see).

Knapp (1991) proposed a generalization of the definition of
the Fresnel zone to broadband signals. We show in this note
that his generalization falls short, because in the limit of a very
narrow amplitude spectrum, his Fresnel zone is not equal to
the Fresnel zone of the corresponding monochromatic signal.
We propose an alternative generalization of the definition of
the first Fresnel zone to broadband signals and illustrate that
the Fresnel zone depends mainly on the dominant frequency of
a wavelet. The restriction of the reflector area to the Fresnel
zone, however, does not produce the desired wavelet for
broadband signals.

Knapp's Fresnel zone for broadband signals is in fact the
area on the reflector that guarantees the correct wavelet and

amplitude of the reflected signal. The size of this area depends
on the length of the wavelet. Because "Fresnel zone" is not a
fitting term for this area, we propose to use the terminology
"zone of influence."

FRESNEL ZONES FOR BROADBAND SIGNALS

Consider a circular horizontal reflector with radius r in a
medium with constant velocity c. The contribution to the
reflected signal of all secondary sources within a certain area
can be computed using the Kirchhoff integral over the area.
This integral can be solved analytically [Trorey's formula,
Knapp, 1991, equation (3)]:

1 h
R(t) = T^ f(t — T0) — T f(t — T), (1)

in which R(t) is the reflected signal, f(t) is the source wavelet
(including reflection coefficient), h is the depth of the reflector,
To is the two-way normal-incidence time to the reflector, C is
the distance to the edge of the reflector, and T is the two-way
traveltime to the edge of the reflector. The first term is the
desired reflection, the source wavelet retarded by the time To
and multiplied with the geometrical spreading 1/T 0 . The
second term is the polarity reversed source wavelet with
retardation T (corresponding with a truncation effect caused by
the finite integration area).

For a source wavelet of duration Ot, the desired reflection
and the truncation effect separate for T >_ To + Ot, whereas
there is interference for smaller values of T. (Because physical
one-sided wavelets are usually of infinite length, the duration
of such a wavelet has to be suitably defined in practice, e.g., the
first part of the wavelet containing most of the energy.) For a
reflector with infinite radius the truncation term vanishes, then
R(t) is exactly equal to the desired reflection.

Using equation (1), the energy of the reflected signal as a
function of the reflector radius can be computed. Figure 3
shows the energy function for three different source wavelets
with h = 1000 m and c = 2000 m/s. For a monochromatic
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signal (Figure 3a) the energy is oscillating. The first maximum
of the curve defines the boundary of the first Fresnel zone, the
other extrema correspond with the boundaries of the higher
order Fresnel zones. The energy function is similar to the
function displayed in Figure 2 in Knapp (1991).

For a signal with a relatively narrow spectrum (Figure 3b),
the energy function oscillates as well. The oscillations, how-
ever, disappear at the radius corresponding to T = To + At,
beyond which the reflection and the truncation effect are
separated. The energy function of the broadband signal in
Figure 3c builds up to a maximum as is also similar for the
other signals, but it quickly stabilizes. Thereafter, the energy
decreases monotonically because of the vanishing amplitude
factor of the truncation term in equation (1).

Comparison of the various energy functions in Figure 3
suggests a straightforward generalization of the definition of
first Fresnel zones to broadband signals: The boundary of the
(first) Fresnel zone corresponds to the position of maximum
energy build-up.

Since higher-order Fresnel zones cannot, in general, be
identified for broadband signals, we may just as well drop the
adjective "first" from the definition. Note that the definition

FIG. 1. Definition of the first Fresnel zone in optics. L is a
monochromatic light source with wavelength k, 0 is the
observation point, and AB is a circular hole in a screen. AC is
the radius of the first Fresnel zone if LAO = LCO + X.

FIG. 2. Extension of the definition of the radius of the first
Fresnel zone for a reflected monochromatic wave with coinci-
dent light source and observation point. AC is the radius of
first Fresnel zone if LA = LC + 4X.

given in Berkhout (1984) can be generalized in a similar way:
Berkhout's (first) Fresnel zone for broadband signals would
correspond to the smallest zone for which the energy of the
reflected wavelet equals the energy of the input wavelet.

The radius of the Fresnel zone is determined mainly by the
dominant frequency of the wavelet. As the dominant frequency
is the same for all three input wavelets, the initial parts of the
energy functions are virtually identical. The higher the domi-
nant frequency, the smaller the radius of the Fresnel zone. The
radius also depends on the bandwidth of the signal. Though
hardly visible, the maximum in Figure 3c is not only smaller
than for the other two signals, it also occurs for a somewhat
smaller radius.

THE ZONE OF INFLUENCE

The length Ot of the wavelet determines the radius where
the truncation effect [second term in equation (1)] is fully
separated from the reflected wavelet [first term in equation
(1)]. Obviously, this radius is different from the Fresnel zone
radius and should be given a different name, for which we
propose the term "radius of influence" and for the correspond-
ing area on the reflector we propose the term "zone of
influence."

The zone of influence is the area on the reflector for which the
difference between the reflection traveltimes and the diffraction
traveltimes is less than the length At of the wavelet.

For monochromatic waves this zone would be infinite. A
comparison with the definition of the Fresnel zone for broad-
band signals in Knapp (1991) shows that Knapp's definition in
fact describes the zone of influence. This is indeed the zone
that should be used in true-amplitude modeling to determine
the minimal range over which to extend the secondary sources.
Beyond this range summation tails can be tapered out.

Restricting the reflector radius to a radius smaller than the
radius of influence would result in a change of the reflected
wavelet with respect to the input wavelet. This change is caused
by the interference between the desired reflected wavelet and
the truncation effect. Figures 4 and 5 illustrate these points for
a narrow-band wavelet (Figure 4a) and a broadband wavelet
(Figure 5a), respectively. Figures 4b and 5b show the wavelets
that have the same energy as the input wavelets. These
wavelets are produced by reflection from the generalized
Fresnel zone corresponding to Berkhout's definition of Fresnel
zone. Figures 4c and Sc show the wavelets with maximum
reflected energy. These wavelets are produced by reflection
from the generalized Fresnel zone corresponding to the con-
ventional definition of Fresnel zone. Figures 4d and 5d show
that the input wavelet is reproduced if the reflector area is
equal to or larger than the zone of influence. Only then the
truncation effect, being separated from the desired reflected
wavelet, can be removed by tapering.

Note that our definition of the zone of influence can be
further generalized to reflections from curved interfaces in
complex geology and to non-normal incidence. To this end,
"radius" in the definition above is understood to be an
azimuth-dependent quantity defined by the distance between
the specular point and the point on the reflector where the
traveltime difference between the two points equals ±At
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FIG. 3. IIllustration of Fresnel zones for different wavelets. The input wavelets are shown on the left, all with central frequency of
37.1 Hz; the energy as a function of the radius of a circular reflector is on the right. The reflector depth is 1000 m; the velocity is
2000 m/s. The Fresnel zone is, in all cases, defined by the maximum of the energy function. (a) Monochromatic wavelet, (b)
narrowband wavelet, (c) broadband Ricker wavelet.
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Fio. 4. The reflected wavelet as a function of the radius of a circular reflector. (a) Input wavelet; (b) reflected wavelet for smallest
radius for which normalized energy equals 1, i.e., radius corresponding to our generalization of Berkhout's definition of Fresnel
zone; (c) reflected wavelet with maximum normalized energy, i.e., radius corresponding to generalized Fresnel zone; (d) reflected
wavelet for radius that is large enough to allow separation of desired reflected wavelet and truncation effect, i.e., radius
corresponding to zone of influence.
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FIG. 5. Same as Figure 4, but now for a broadband wavelet. Note that only in (d) is the correct wavelet shape reproduced.
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(minus sign for locations where the traveltime reaches a
maximum close to the specular point).
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